J/A+A/323/469       Optical spectra of post-AGB stars (Bakker+ 1997)

Circumstellar C2, CN, and CH+ in the optical spectra of post-AGB stars Bakker E.J., van Dishoeck E.F., Waters L.B.F.M., Schoenmaker T. <Astron. Astrophys. 323, 469 (1997)> =1997A&A...323..469B 1997A&A...323..469B (SIMBAD/NED BibCode)
ADC_Keywords: Spectroscopy ; Line Profiles Keywords: molecular processes - circumstellar matter - stars: AGB and post-AGB - line: identification Abstract: We present optical high-resolution spectra of a sample of sixteen post-AGB stars and IRC +10216. Of the post-AGB stars, ten show C2 Phillips (A1{PI}u-X1{SIGMA}+g) and Swan (d3{PI}g-a3{PI}u) and CN Red System (A2{PI}-X2{SIGMA}+) absorption, one CH+ (A1{PI}-X1{SIGMA}+) emission, one CH+ absorption, and four without any molecules. We find typically Trot ∼43-399, 155-202, and 18-50K, logN∼14.90-15.57, 14.35, and 15.03-16.47cm-2 for C2, CH+, and CN respectively, and 0.6≤N(CN)/N(C2)≤11.2. We did not detect isotopic lines, which places a lower limit on the isotope ratio of 12C/13C>20. The presence of C2 and CN absorption is correlated with cold dust (Tdust≤300K) and the presence of CH+ with hot dust (Tdust≥300K). All objects with the unidentified 21µm emission feature exhibit C2 and CN absorption, but not all objects with C2 and CN detections exhibit a 21µm feature. The derived expansion velocity, ranging from 5 to 44km/s, is the same as that derived from CO millimeter line emission. This unambiguously proves that these lines are of circumstellar origin and are formed in the AGB ejecta (circumstellar shell expelled during the preceding AGB phase). Furthermore there seems to be a relation between the C2 molecular column density and the expansion velocity, which is attributed to the fact that a higher carbon abundance of the dust leads to a more efficient acceleration of the AGB wind. Using simple assumptions for the location of the molecular lines and molecular abundances, mass-loss rates have been derived from the molecular absorption lines and are comparable to those obtained from CO emission lines and the infrared excess. Objects: ---------------------------------------------------------- RA (2000) DE Designation(s) ---------------------------------------------------------- 04 32 56.6 +34 36 11 IRAS 04296+3429 05 14 07.9 +13 50 28 IRAS 05113+1347 05 36 54.2 +08 54 10 IRAS 05341+0852 06 19 58.2 -10 38 14 HD 44179 07 16 10.2 +09 59 48 HD 56126 = IRAS 07134+1005 08 02 40.5 -24 04 43 IRAS 08005-2356 09 47 57.2 +13 16 44 IRC +10216 = IRAS 09452+1330 20 01 59.4 +32 47 32 IRAS 20000+3239 21 02 18.7 +36 41 38 AFGL 2688 22 24 30.6 +43 43 03 IRAS 22223+4327 22 29 10.3 +54 51 06 HD 235858 = IRAS 22272+5435 23 32 44.9 +62 03 49 IRAS 23304+6147 22 35 27.4 -17 15 27 HD 213985 = IRAS 22327-1731 ---------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table5 106 13 Physical parameters derived from molecular lines tablea1 29 55 C2 A1PIu-X1SIGMA+g Phillips (2,0) band tablea2 80 55 C2 A1PIu-X1SIGMA+g Phillips (3,0) band tablea3 42 100 CN A2PI-X2SIGMA+ Red System (2,0) band tablea4 72 100 CN A2PI-X2SIGMA+ Red System (3,0) band tablea5 34 34 CH+ A1PI-X1SIGMA+ (0,0) band tables.tex 108 680 LaTeX version of the tables -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 I1 --- Reaction [1/2] Reaction considered (1) 3- 17 A15 --- Name Object name 18 A1 --- n_Name [f] Note on name (2) 19- 23 F5.1 km/s Vel C2 or CH+ velocity 25- 27 F3.1 km/s e_Vel rms uncertainty on Vel 29- 32 F4.1 km/s Vexp1 C2 or CH+ Vexp (±2.0) (3) 34- 36 I3 K Trot1 C2 or CH+ rotational temperature 38- 39 I2 K e_Trot1 rms uncertainty on Trot1 41- 45 F5.2 cm-2 logNmol1 C2 or CH+ column density (±0.10) 47- 51 F5.2 cm-2 logNmolSum C2 or CH+ column density sum over J'' or N'' levels of observed transitions 54- 57 F4.1 solMass/yr log(dM/dt)1 ? C2 Mass loss rate 59- 63 F5.1 km/s V(CN) ? CN velocity 65- 67 F3.1 km/s e_V(CN) ? rms uncertainty on V(CN) 69- 72 F4.1 km/s Vexp2 ? CN Vexp (±2.0) (3) 74- 75 I2 K Trot2 ? CN rotational temperature 77- 78 I2 K e_Trot2 ? rms uncertainty on Trot2 80- 84 F5.2 cm-2 logNmol2 ? CN column density (±0.10) 86- 89 F4.1 solMass/yr log(dM/dt)2 ? CN Mass loss rate 91- 94 F4.1 km/s Dv ? v(CN) - V(C2) (4) 96- 98 F3.1 km/s e_Dv ? rms uncertainty on Dv 100-103 F4.1 --- N(CN)/N(C2) ? CN/C2 abundance ratio 105-106 I2 --- 12C/13C ? Upper limit (=>) for 12C/13C ratio -------------------------------------------------------------------------------- Note (1): 1: C2 A1PIu - X1SIGMA+g (3,0) or (2,0) (C2 (2,0) for IRC +10216, else C2 (3,0)) and CN A2PI - X2SIGMA+ (2,0) or (3,0) (CN (2,0) for IRAS 08005-2356, HD 235858, and IRC +10216, else CN (3,0)) 2: CH+ A1PI - X1SIGMA+ (0,0) Note (2): the emission line spectrum has been analyzed with A1{PI} J'=0 as energy zero level. vexp and Trot are real, but the column density of HD 44179 is rather meaningless Note (3): vexp=vsys-v_(Element) (Element = C2, CN or CH+) Note (4): δv= vCN-vC2 -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- B Branch identification code (1) 4- 5 I2 --- J" Rotational quantum number, total angular momentum including spin (Herzberg 1950) 7- 14 F8.3 0.1nm Lambda Laboratory wavelength of transition in air 16- 23 E8.2 --- f(J'J") Oscillator strength 25- 29 F5.1 0.1pm EW ? Equivalent width -------------------------------------------------------------------------------- Note (1): Branch identification: -1: P branch ({DELTA}(J)=-1=J'-J") 0: Q branch ({DELTA}(J)=0=J'-J") 1: R branch ({DELTA}(J)=1=J'-J") -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- B Branch identification code (1) 4- 5 I2 --- J" Rotational quantum number, total angular momentum including spin (Herzberg 1950) 7- 14 F8.3 0.1nm Lambda Laboratory wavelength of transition in air 16- 23 E8.2 --- f(J'J") Oscillator strength 25- 28 F4.1 0.1pm EW(042) ? Equivalent width of IRAS 04296+3429 30- 33 F4.1 0.1pm EW(051) ? Equivalent width of IRAS 05113+1347 35- 38 F4.1 0.1pm EW(053) ? Equivalent width of IRAS 05341+0852 40- 43 F4.1 0.1pm EW(561) ? Equivalent width of HD 56126 45- 49 F5.1 0.1pm EW(080) ? Equivalent width of IRAS 08005-2356 51- 54 F4.1 0.1pm EW(102) ? Equivalent width of IRC +10216 56- 59 F4.1 0.1pm EW(200) ? Equivalent width of IRAS 20000+3239 61- 65 F5.1 0.1pm EW(268) ? Equivalent width of AFGL 2688 67- 70 F4.1 0.1pm EW(222) ? Equivalent width of IRAS 22223+4327 72- 75 F4.1 0.1pm EW(235) ? Equivalent width of HD 235858 77- 80 F4.1 0.1pm EW(233) ? Equivalent width of IRAS 23304+6147 -------------------------------------------------------------------------------- Note (1): Branch identification: -1: P branch ({DELTA}(J)=-1=J'-J") 0: Q branch ({DELTA}(J)=0=J'-J") 1: R branch ({DELTA}(J)=1=J'-J") -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea3 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- B Branch identification code (1) 4- 6 F3.1 --- J" Rotational quantum number, total angular momentum including spin (Herzberg 1950) 8 I1 --- N" Rotational quantum number, total angular momentum excluding spin (Herzberg 1950) (2) 10- 17 F8.3 0.1nm Lambda Laboratory wavelength of transition in air 19- 26 E8.2 --- f(J'J") Oscillator strength 28- 32 F5.1 0.1pm EW(080) ? Equivalent width of IRAS 08005-2356 34- 37 F4.1 0.1pm EW(102) ? Equivalent width of IRC +10216 39- 42 F4.1 0.1pm EW(235) ? Equivalent width of HD 235858 -------------------------------------------------------------------------------- Note (1): Branch identification: 1: R1, 2: Q1, 3: P1, 4: QR12, 5: PQ12, 6: OP12 7: R2. 8: Q2' 9: P2. 10: SR21, 11: RQ21, 12: QP21 Note (2): For CN: J"=N"-1/2(F2), J"=N"+1/2(F2) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea4 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- B Branch identification code (1) 4- 6 F3.1 --- J" Rotational quantum number, total angular momentum including spin (Herzberg 1950) 8 I1 --- N" Rotational quantum number, total angular momentum excluding spin (Herzberg 1950) (2) 10- 17 F8.3 0.1nm Lambda Laboratory wavelength of transition in air 19- 26 E8.2 --- f(J'J") Oscillator strength 28- 31 F4.1 0.1pm EW(042) ? Equivalent width of IRAS 04296+3429 33- 37 F5.1 0.1pm EW(051) ? Equivalent width of IRAS 05113+1347 39- 42 F4.1 0.1pm EW(053) ? Equivalent width of IRAS 05341+0852 44- 48 F5.1 0.1pm EW(561) ? Equivalent width of HD 56126 50- 54 F5.1 0.1pm EW(200) ? Equivalent width of IRAS 20000+3239 56- 60 F5.1 0.1pm EW(268) ? Equivalent width of AFGL 2688 62- 66 F5.1 0.1pm EW(222) ? Equivalent width of IRAS 22223+4327 68- 72 F5.1 0.1pm EW(233) ? Equivalent width of IRAS 23304+6147 -------------------------------------------------------------------------------- Note (1): Branch identification: 1: R1, 2: Q1, 3: P1, 4: QR12, 5: PQ12, 6: OP12 7: R2. 8: Q2' 9: P2. 10: SR21, 11: RQ21, 12: QP21 Note (2): For CN: J"=N"-1/2(F2), J"=N"+1/2(F2) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea5 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- B Branch identification code (1) 4- 5 I2 --- J" Rotational quantum number, total angular momentum including spin (Herzberg 1950) 7- 14 F8.3 0.1nm Lambda Laboratory wavelength of transition in air 16- 23 E8.2 --- f(J'J") Oscillator strength (2) 25- 29 F5.1 0.1pm EW(441) ? Equivalent width of HD 44179 31- 34 F4.1 0.1pm EW(213) ? Equivalent width of HD 213985 -------------------------------------------------------------------------------- Note (1): Branch identification: -1: P branch ({DELTA}(J)=-1=J'-J") 0: Q branch ({DELTA}(J)=0=J'-J") 1: R branch ({DELTA}(J)=1=J'-J") Note (2): f(J',J")=fabs is the absorption oscillator strength, for emission gJ' fem = gJ" fabs -------------------------------------------------------------------------------- Acknowledgements: Eric J. Bakker References: Herzberg 1950, "Molecular spectra and molecular structure I. Spectra of diatomic molecules", Second edition.
(End) Patricia Bauer [CDS] 09-Oct-1996
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line