J/A+A/407/1039 X-ray power spectra of Cygnus X-1 (Pottschmidt+, 2003)
Long term variability of Cygnus X-1
I. X-ray spectral-temporal correlations in the hard state.
Pottschmidt K., Wilms J., Nowak M.A., Pooley G.G., Gleissner T.,
Heindl W.A., Smith D.M., Remillard R., Staubert R.
<Astron. Astrophys. 407, 1039 (2003)>
=2003A&A...407.1039P 2003A&A...407.1039P
ADC_Keywords: X-ray sources ; Binaries, X-ray
Mission_Name: RXTE
Keywords: stars: individual: Cyg X-1 - binaries: close - X-rays: stars
Abstract:
We present the long term evolution of the timing properties of the
black hole candidate Cygnus X-1 in the 0.002-128 Hz frequency range as
monitored from 1998 to 2001 with the Rossi X-ray Timing Explorer
(RXTE). For most of this period the source was in its hard state.
Description:
This file contains the results of the fits of multiple
Lorentzians to the X-ray power spectra of Cygnus X-1 as presented in
Table 2 of the paper.
Note that the data are sorted according to the Proposal ID and the
OBSID, and are thus not in temporal order.
Fit parameters which were not present in the fit are identified by
setting them to NULL, i.e., by leaving the respective field blank.
Where the error-bars of a fit parameter are equal to NULL by leaving
the respective field blank, the corresponding parameter
has been held fixed at the value given in the table.
Where both error-bars are zero, the fit parameter was a free
parameter, but the error itself has not been determined (e.g.,
caused by numerical instability in the case of the narrow Lorentzian
components).
Objects:
----------------------------------------------------------
RA (2000) DE Designation(s)
----------------------------------------------------------
19 58 21.7 +35 12 05 Cyg X-1 = HD 226868
----------------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 1860 130 Results of fitting multiple Lorentzians to
selected power spectra of the Cyg X-1 RXTE/PCA
monitoring observations from 1998-2001 in the
frequency range from (1/512)Hz to 32Hz (P30157)
or 128Hz (others), for the 2-13keV band
table2.fit 2880 27 FITS version of table2
--------------------------------------------------------------------------------
See also:
J/PAZh/26/27 : Variability of Cyg X-1 (V1357) in 1995-1996 (Karitskaya+, 2000)
J/AZh/78/408 : Variability of Cyg X-1 in 1994-1998 (Karitskaya+, 2001)
http://heasarc.gsfc.nasa.gov/FTP/xte/data/archive : XTE Archive
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 A6 --- Proposal ! RXTE Proposal Number
16- 17 A2 --- ObsID ! Observation ID
31- 38 A8 --- PCUOff ! PCUs which were off
53- 65 F13.5 d StartObs ! MJD of Start of Observation
71- 80 A10 "YYYY.MM.DD" Date ! Date of Observation
89- 95 F7.1 s ExpTime ! Exposure time
96- 110 E15.6 --- Chi2 ! Chi-Squared of Fit
119- 120 I2 --- DOF ! Degrees of Freedom
121- 140 E20.6 --- R1 ? Norm of Lorentz 1 (1)
141- 160 E20.6 --- E_R1 ? Error on R1 upper 1sigma (1)
161- 180 E20.6 --- e_R1 ? Error on R1, lower 1sigma (1)
181- 200 E20.6 Hz f1 ? Center Frequency of Lorentz 1
201- 220 E20.6 Hz E_f1 ? Error on f1, upper 1sigma
221- 240 E20.6 Hz e_f1 ? Error on f1, lower 1sigma
241- 260 E20.6 --- Q1 ? Quality-Factor of Lorentz 1 (1)
261- 280 E20.6 --- E_Q1 ? Error on Q1, upper 1sigma (1)
281- 300 E20.6 --- e_Q1 ? Error on Q1, lower 1sigma (1)
301- 320 E20.6 Hz Peak1 ? Peak of Lorentz 1 (derived)
321- 340 E20.6 --- R2 ? Norm of Lorentz 2
341- 360 E20.6 --- E_R2 ? Error on R2, upper 1sigma
361- 380 E20.6 --- e_R2 ? Error on R2, lower 1sigma
381- 400 E20.6 Hz f2 ? Center Frequency of Lorentz 2
401- 420 E20.6 Hz E_f2 ? Error on f2, upper 1sigma
421- 440 E20.6 Hz e_f2 ? Error on f2, lower 1sigma
441- 460 E20.6 --- Q2 ? Quality-Factor of Lorentz 2 (1)
461- 480 E20.6 --- E_Q2 ? Error on Q2, upper 1sigma (1)
481- 500 E20.6 --- e_Q2 ? Error on Q2, lower 1sigma (1)
501- 520 E20.6 Hz Peak2 ? Peak of Lorentz 2 (derived)
521- 540 E20.6 --- R3 ? Norm of Lorentz 3 (1)
541- 560 E20.6 --- E_R3 ? Error on R3, upper 1sigma (1)
561- 580 E20.6 --- e_R3 ? Error on R3, lower 1sigma (1)
581- 600 E20.6 Hz f3 ? Center Frequency of Lorentz 3
601- 620 E20.6 Hz E_f3 ? Error on f3, upper 1sigma
621- 640 E20.6 Hz e_f3 ? Error on f3, lower 1sigma
641- 660 E20.6 --- Q3 ? Quality-Factor of Lorentz 3 (1)
661- 680 E20.6 --- E_Q3 ? Error on Q3, upper 1sigma (1)
681- 700 E20.6 --- e_Q3 ? Error on Q3, lower 1sigma (1)
701- 720 E20.6 Hz Peak3 ? Peak of Lorentz 3 (derived)
721- 740 E20.6 --- R4 ? Norm of Lorentz 4 (1)
741- 760 E20.6 --- E_R4 ? Error on R4, upper 1sigma (1)
761- 780 E20.6 --- e_R4 ? Error on R4, lower 1sigma (1)
781- 800 E20.6 Hz f4 ? Center Frequency of Lorentz 4
801- 820 E20.6 Hz E_f4 ? Error on f4, upper 1sigma
821- 840 E20.6 Hz e_f4 ? Error on f4, lower 1sigma
841- 860 E20.6 --- Q4 ? Quality-Factor of Lorentz 4 (1)
861- 880 E20.6 --- E_Q4 ? Error on Q4, upper 1sigma (1)
881- 900 E20.6 --- e_Q4 ? Error on Q4, lower 1sigma (1)
901- 920 E20.6 Hz Peak4 ? Peak of Lorentz 4 (derived)
921- 940 E20.6 --- R5 ? Norm of Lorentz 5 (1)
941- 960 E20.6 --- E_R5 ? Error on R5, upper 1sigma (1)
961- 980 E20.6 --- e_R5 ? Error on R5, lower 1sigma (1)
981-1000 E20.6 Hz f5 ? Center Frequency of Lorentz 5
1001-1020 E20.6 Hz E_f5 ? Error on f5, upper 1sigma
1021-1040 E20.6 Hz e_f5 ? Error on f5, lower 1sigma
1041-1060 E20.6 --- Q5 ? Quality-Factor of Lorentz 5 (1)
1061-1080 E20.6 --- E_Q5 ? Error on Q5, upper 1sigma (1)
1081-1100 E20.6 --- e_Q5 ? Error on Q5, lower 1sigma (1)
1101-1120 E20.6 Hz Peak5 ? Peak of Lorentz 5 (derived)
1121-1140 E20.6 --- R6 ? Norm of Lorentz 6 (1)
1141-1160 E20.6 --- E_R6 ? Error on R6, upper 1sigma (1)
1161-1180 E20.6 --- e_R6 ? Error on R6, lower 1sigma (1)
1181-1200 E20.6 Hz f6 ? Center Frequency of Lorentz 6
1201-1220 E20.6 Hz E_f6 ? Error on f6, upper 1sigma
1221-1240 E20.6 Hz e_f6 ? Error on f6, lower 1sigma
1241-1260 E20.6 --- Q6 ? Quality-Factor of Lorentz 6 (1)
1261-1280 E20.6 --- E_Q6 ? Error on Q6, upper 1sigma (1)
1281-1300 E20.6 --- e_Q6 ? Error on Q6, lower 1sigma (1)
1301-1320 E20.6 Hz Peak6 ? Peak of Lorentz 6 (derived)
1321-1340 E20.6 --- R7 ? Norm of Lorentz 7 (1)
1341-1360 E20.6 --- E_R7 ? Error on R7, upper 1sigma (1)
1361-1380 E20.6 --- e_R7 ? Error on R7, lower 1sigma (1)
1381-1400 E20.6 Hz f7 ? Center Frequency of Lorentz 7
1401-1420 E20.6 Hz E_f7 ? Error on f7, upper 1sigma
1421-1440 E20.6 Hz e_f7 ? Error on f7, lower 1sigma
1441-1460 E20.6 --- Q7 ? Quality-Factor of Lorentz 7 (1)
1461-1480 E20.6 --- E_Q7 ? Error on Q7, upper 1sigma (1)
1481-1500 E20.6 --- e_Q7 ? Error on Q7, lower 1sigma (1)
1501-1520 E20.6 Hz Peak7 ? Peak of Lorentz 7 (derived)
1521-1540 E20.6 --- R8 ? Norm of Lorentz 8 (1)
1541-1560 E20.6 --- E_R8 ? Error on R8, upper 1sigma (1)
1561-1580 E20.6 --- e_R8 ? Error on R8, lower 1sigma (1)
1581-1600 E20.6 Hz f8 ? Center Frequency of Lorentz 8
1601-1620 E20.6 Hz E_f8 ? Error on f8, upper 1sigma
1621-1640 E20.6 Hz e_f8 ? Error on f8, lower 1sigma
1641-1660 E20.6 --- Q8 ? Quality-Factor of Lorentz 8 (1)
1661-1680 E20.6 --- E_Q8 ? Error on Q8, upper 1sigma (1)
1681-1700 E20.6 --- e_Q8 ? Error on Q8, lower 1sigma (1)
1701-1720 E20.6 Hz Peak8 ? Peak of Lorentz 8 (derived)
1721-1740 E20.6 --- Power ? Norm of Power-Law (A) (2)
1741-1760 E20.6 --- E_Power ? Error on Power-Law, +1sigma
1761-1780 E20.6 --- e_Power ? Error on Power-Law, -1sigma
1793-1800 F8.6 --- Alpha ? Slope of Power-Law (2)
1813-1820 F8.6 --- E_Alpha ? Error on Alpha, upper 1sigma
1833-1840 F8.6 --- e_Alpha ? Error on Alpha, lower 1sigma
1856-1860 F5.3 --- Gamma ? Photon Index of X-ray Spectrum
--------------------------------------------------------------------------------
Note (1): We describe the power spectra as the sum of Lorentzian profiles
around the resonance frequency F of the form:
L(f) = 1/π . (2R2QF) / (F2 + 4Q2(f-F)2)
where F is the resonance frequency of the Lorentzian,
Q ∼ F/ΔF(FWHM) its quality factor, and
R its normalization constant.
Note (2): Power-law of the form: PL(f)=R*f-α
--------------------------------------------------------------------------------
Acknowledgements: Katja Pottschmidt
(End) Patricia Bauer [CDS] 19-Aug-2003