J/A+A/447/245       Cyg X-1 Spectral Evolution 1999-2004     (Wilms+, 2006)

Long Term Variability of Cyg X-1: IV. Spectral Evolution 1999-2004. Wilms J., Nowak M.A., Pottschmidt K., Pooley G.G., Fritz S. <Astron. Astrophys. 447, 245 (2006)> =2006A&A...447..245W 2006A&A...447..245W
ADC_Keywords: Binaries, X-ray ; Stars, variable Keywords: stars: individual: Cyg X-1 - stars: binaries: close - X-rays: binaries - black hole physics Abstract: Continuing the observational campaign initiated by our group, we present the long term spectral evolution of the Galactic black hole candidate Cygnus X-1 in the X-rays and at 15GHz. We present about 200 pointed observations taken between early 1999 and late 2004 with the Rossi X-ray Timing Explorer and the Ryle radio telescope. The X-ray spectra are remarkably well described by a simple broken power law spectrum with an exponential cutoff. Physically motivated Comptonization models, e.g., by Titarchuk (1994ApJ...434..570T 1994ApJ...434..570T, compTT) and by Coppi (1999, eqpair), can reproduce this simplicity; however, the success of the phenomenological broken power law models cautions against ``over-parameterizing'' the more physical models. Broken power law models reveal a significant linear correlation between the photon index of the lower energy power law and the hardening of the power law at about 10keV. This phenomenological soft/hard power law correlation is partly attributable to correlations of broad band continuum components, rather than being dominated by the weak hardness/reflection fraction correlation present in the Comptonization model. Specifically, the Comptonization models show that the bolometric flux of a soft excess (e.g., disk component) is strongly correlated with the compactness ratio of the Comptonizing medium, with Ldisk∝(lh/ls_)-0.19. Over the course of our campaign, Cyg X-1 transited several times into the soft state, and exhibited a large number of ``failed state transitions''. The fraction of the time spent in such low radio emission/soft X-ray spectral states has increased from about 10% in 1996-2000 to about 34% since early 2000. We find that radio flares typically occur during state transitions and failed state transitions (at lh/ls∼3), and that there is a strong correlation between the 10-50keV X-ray flux and the radio luminosity of the source. We demonstrate that rather than there being distinctly separated states, in contrast to the timing properties the spectrum of Cyg X-1 shows variations between extremes of properties, with clear cut examples of spectra at every intermediate point in the observed spectral correlations. Objects: ---------------------------------------------------------- RA (2000) DE Designation(s) ---------------------------------------------------------- 19 58 21.7 +35 12 06 Cyg X-1 = V* V1357 Cyg ---------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 388 202 Best-fit results for the broken power-law model table1.fit 2880 31 FIT version of table1 table2.dat 394 202 Best-fit results for the compTT models table2.fit 2880 31 FIT version of table2 table3.dat 494 202 Best-fit results for the eqpair models table3.fit 2880 34 FIT version of table3 -------------------------------------------------------------------------------- See also: J/AZh/78/408 : Variability of Cyg X-1 in 1994-1998 (Karitskaya+, 2001) J/PAZh/26/27 : Variability of Cyg X-1 (V1357) in 1995-1996 (Karitskaya+, 2000) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 A19 "date" ObsStart Date of the start of the observation, YYYY-MM-DDThh:mm:ss 21- 39 A19 "date" ObsEnd Date of the end of the observation, YYYY-MM-DDThh:mm:ss 41- 48 F8.2 d MJDStart MJD of the start of observation 50- 57 F8.2 d MJDStop MJD of the end of observation 59- 63 I5 s ExpTime Exposure time 65- 70 F6.1 ct/s CR Count rate 72- 78 F7.5 ct/s e_CR rms uncertainty on CR 80- 85 F6.4 cm-2/s Fph(2-5) 2-5keV band photon flux (G1) 87- 96 E10.5 mW/m2 Fene(2-5) 2-5keV band energy flux 98-103 F6.4 cm-2/s Fph(5-10) 5-10keV band photon flux (G1) 105-114 E10.5 mW/m2 Fene(5-10) 5-10keV energy flux 116-123 F8.6 cm-2/s Fph(10-50) 10-50keV band photon flux (G1) 125-134 E10.5 mW/m2 Fene(10-50) 10-50keV band energy flux 136-144 F9.7 cm-2/s Fph(50-100) 50-100keV band photon flux (G1) 146-155 E10.5 mW/m2 Fene(50-100) 50-100keV band energy flux 158-163 F6.4 cm-2/s Fph(2-100) 2-100keV band photon flux (G1) 165-174 E10.5 mW/m2 Fene(2-100) 2-100keV band energy flux 176-182 F7.3 --- chi2 chi2 value 183-185 I3 --- DOF Degree of freedom 187-193 F7.5 --- chi2red Reduced chi2 value 196-205 E10.8 10+22cm-2 nH Hydrogen column density 207-215 F9.7 10+22cm-2 e_nH 90% uncertainty range on nH 217-226 F10.7 keV cutoffE Cutoff energy 228-238 F11.8 keV e_cutoffE 90% uncertainty range on cutoffE 240-246 F7.3 keV FoldE Folding energy 247-253 F7.3 keV e_FoldE 90% uncertainty range on FoldE 255-260 F6.4 keV lineE Fe Kalpha line energy 262-267 F6.4 keV e_lineE 90% uncertainty range on LineE 269-279 F11.9 keV lineEsigma Fe Kalpha width (sigma) 282-290 F9.7 keV e_lineEsigma 90% uncertainty range on lineEsigma 292-300 F9.7 --- lineEN Fe Kalpha norm (total photons in line) 302-310 F9.7 --- e_lineEN 90% uncertainty range on lineEN 312-317 F6.4 --- PI1 Photon index below break energy 319-324 F6.4 --- e_PI1 90% uncertainty range on PI1 326-332 F7.4 keV BreakE Break energy 334-340 F7.4 keV e_BreakE 90% uncertainty range on BreakE 342-347 F6.4 --- PI2 Photon index above break energy 349-354 F6.4 --- e_PI2 90% uncertainty range on PI2 357-363 F7.4 --- bknpowerN Photon flux of bkn powerlaw at 1keV 365-372 F8.5 --- e_bknpowerN 90% uncertainty range on bknpoweN 374-380 F7.5 --- Factor Flux normalization factor 382-388 F7.5 --- e_Factor 90% uncertainty range on Factor -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 A19 "date" ObsStart Date of the start of the observation, YYYY-MM-DDThh:mm:ss 21- 39 A19 "date" ObsEnd Date of the end of the observation, YYYY-MM-DDThh:mm:ss 41- 48 F8.2 d MJDStart MJD of the start of observation 50- 57 F8.2 d MJDStop MJD of end of observation 59- 63 I5 s ExpTime Exposure time 65- 70 F6.1 ct/s CR Count rate 72- 78 F7.5 ct/s e_CR rms uncertainty on CR 80- 85 F6.3 cm-2/s FphDisk Accretion disk unabsorbed photon flux (G1) 87- 96 E10.5 mW/m2 FeneDisk Accretion disk unabsorbed energy flux 98-103 F6.3 cm-2/s FphTotal Bolometric unabsorbed photon flux (G1) 105-114 E10.5 mW/m2 FeneTotal Bolometric unabsorbed energy flux 116-121 F6.4 cm-2/s Fph(2-5) 2-5keV band photon flux (G1) 123-132 E10.5 mW/m2 Fene(2-5) 2-5keV band energy flux 134-139 F6.4 cm-2/s Fph(5-10) 5-10keV band photon flux (G1) 141-150 E10.5 mW/m2 Fene(5-10) 5-10keV energy flux 152-159 F8.6 cm-2/s Fph(10-50) 10-50keV band photon flux (G1) 161-170 E10.5 mW/m2 Fene(10-50) 10-50keV band energy flux 172-180 F9.7 cm-2/s Fph(50-100) 50-100keV band photon flux (G1) 182-191 E10.5 mW/m2 Fene(50-100) 50-100keV band energy flux 193-198 F6.2 --- chi2 chi2 value of the best fit 200-202 I3 --- DOF Degree of freedom 204-210 F7.5 --- chi2red Reduced chi2 value 212-221 E10.8 10+22cm-2 nH Hydrogen column density 223-231 F9.7 10+22cm-2 e_nH 90% uncertainty range on nH 233-239 F7.5 keV Tin Inner disk temperature 241-247 F7.5 keV e_Tin 90% uncertainty range on Tin 249-255 F7.2 --- diskbbN Norm of disk (see XSPEC manual) 257-264 F8.3 --- e_diskbbN 90% uncertainty range on diskbbN 266-272 F7.3 keV kT Temperature of Comptonizing plasma 274-281 F8.3 keV e_kT 90% uncertainty range on kT 283-290 F8.6 --- taup Optical depth of Comptonizing plasma 292-300 F9.6 --- e_taup 90% uncertainty range on taup 302-310 F9.7 --- compTTN Norm of compTT model 312-321 F10.7 --- e_compTTN 90% uncertainty range on compTTN 323-332 F10.7 --- Refl omega/2pi for the reflecting medium 334-342 F9.6 --- e_Refl 90% uncertainty range on Refl 344-350 F7.5 keV Reflsigma omega/2pi for the reflecting medium (sigma) 352-358 F7.5 keV e_Reflsigma 90% uncertainty range on Reflsigma 360-368 F9.7 --- ReflN omega/2pi for the reflecting medium norm 370-378 F9.7 --- e_ReflN 90% uncertainty range on ReflN 380-386 F7.5 --- Factor Flux normalization factor 388-394 F7.5 --- e_Factor 90% uncertainty range on Factor -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 A19 "date" ObsStart Earliest time entering observation, YYYY-MM-SSThh:mm:ss 22- 40 A19 "date" ObsEnd Latest time entering observation, YYYY-MM-SSThh:mm:ss 42- 49 F8.2 s MJDStart MJD of the start of observation 51- 58 F8.2 s MJDStop MJD of the end of observation 60- 64 I5 s TimeExp Exposure time of each file 66- 71 F6.1 ct/s CR Count rate of each file 73- 79 F7.5 ct/s e_CR rms uncertainty of each count rate 81- 86 F6.3 cm-2/s FphDisk Accretion disk unabsorbed photon flux (G1) 88- 97 E10.5 mW/m2 FeneDisk Accretion disk unabsorbed energy flux 99-104 F6.3 cm-2/s FphTotal Bolometric unabsorbed photon flux (G1) 106-115 E10.5 mW/m2 FeneTotal Bolometric unabsorbed energy flux 118-123 F6.4 cm-2/s Fph(2-5) 2-5keV band Photon flux (G1) 126-135 E10.5 mW/m2 Fene(2-5) 2-5keV band Energy flux 140-145 F6.4 cm-2/s Fph(5-10) 5-10keV band Photon flux (G1) 147-156 E10.5 mW/m2 Fene(5-10) 5-10keV band Energy flux 159-166 F8.6 cm-2/s Fph(10-50) 10-50keV band Photon flux (G1) 169-178 E10.5 mW/m2 Fene(10-50) 10-50keV band Energy flux 181-189 F9.7 cm-2/s Fph(50-100) 50-100keV Photon flux (G1) 192-201 E10.5 mW/m2 Fene(50-100) 50-100keV band Energy flux 204-209 F6.2 --- chi2 Chi-squared value of the best fit 212-214 I3 --- DOF Degrees of freedom 217-223 F7.5 --- chi2red Reduced Chi-squared 226-235 E10.8 10+22cm-2 nH Hydrogen column density 238-246 F9.7 10+22cm-2 e_nH 90% uncertainty range of nH parameter 249-255 F7.5 keV Tin Innner disk temperature 258-264 F7.5 keV e_Tin 90% uncertainty range of Tin parameter 267-277 F11.5 --- DiskbbN norm of the disk 280-290 F11.5 --- e_DiskbbN 90% uncertainty range of DiskbbN 293-298 F6.4 keV LineE Fe Kalpha line energy 301-306 F6.4 keV e_LineE 90% uncertainty range of LineE 309-315 F7.5 keV LineEsigma Fe Kalpha line width 318-325 F8.6 keV e_LineEsigma 90% uncertainty range of LineEsigma 328-336 F9.7 --- LineEN Fe Kalpha norm (total photons in line) 339-347 F9.7 --- e_LineEN 90% uncertainty range of LineEN 350-356 F7.5 --- lhls Ratio of hard to soft compactness 359-365 F7.5 --- e_lhls 90% uncertainty range of lhls 368-374 F7.5 --- taup optical depth of Comptonizing plasma 377-383 F7.5 --- e_taup 90% uncertainty range of taup 386-395 E10.7 --- Refl Omega/2pi for reflecting medium 398-405 F8.6 --- e_Refl 90% uncertainty range of Refl 408-420 E13.12 --- xi Ionization parameter of reflector 423-430 F8.3 --- e_xi 90% uncertainty range of xi 439-447 F9.7 --- eqpairN Norm of eqpair model 450-460 F11.8 --- e_eqpairN 90% uncertainty range of eqpairN 471-477 F7.5 --- Factor Flux normalization factor 488-494 F7.5 --- e_Factor 90% uncertainty range of Factor -------------------------------------------------------------------------------- Global notes: Note (G1): in ph/cm2/s -------------------------------------------------------------------------------- Acknowledgements: Joern Wilms, j.wilms(at)warwick.ac.uk
(End) Patricia Vannier [CDS] 17-Oct-2005
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line