J/A+A/535/A80 Type-2 QSOs in XMM-COSMOS (Mainieri+, 2011)
Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS.
Mainieri V., Bongiorno A., Merloni A., Aller M., Carollo M., Iwasawa K.,
Koekemoer A.M., Mignoli M., Silverman J.D., Bolzonella M., Brusa M.,
Comastri A., Gilli R., Halliday C., Ilbert O., Lusso E., Salvato M.,
Vignali C., Zamorani G., Contini T., Kneib J.-P., Le Fevre O., Lilly S.,
Renzini A., Scodeggio M., Balestra I., Bardelli S., Caputi K., Coppa G.,
Cucciati O., De La Torre S., De Ravel L., Franzetti P., Garilli B.,
Iovino A., Kampczyk P., Knobel C., Kovac K., Lamareille F.,
Le Borgne J.-F., Le Brun V., Maier C., Nair P., Pello R., Peng Y.,
Perez Montero E., Pozzetti L., Ricciardelli E., Tanaka M., Tasca L.,
Tresse L., Vergani D., Zucca E., Aussel H., Capak P., Cappelluti N.,
Elvis M., Fiore F., Hasinger G., Impey C., Le Floc'h E., Scoville N.,
Taniguchi Y., Trump J.
<Astron. Astrophys., 535, A80 (2011)>
=2011A&A...535A..80M 2011A&A...535A..80M
ADC_Keywords: QSOs ; X-ray sources ; Morphology
Keywords: quasars: general - galaxies: active - galaxies: nuclei -
X-rays: general - galaxies: star formation
Abstract:
We explore the connection between black hole growth at the center of
obscured quasars selected from the XMM-COSMOS survey and the physical
properties of their host galaxies. We study a bolometric regime
(<Lbol≥8x1045erg/s) where several theoretical models invoke major
galaxy mergers as the main fueling channel for black hole accretion.
To derive robust estimates of the host galaxy properties, we use an
SED fitting technique to distinguish the AGN and host galaxy emission.
We evaluate the effect on galaxy properties estimates of being unable
to remove the nuclear emission from the SED. The superb
multi-wavelength coverage of the COSMOS field allows us to obtain
reliable estimates of the total stellar masses and star formation
rates (SFRs) of the hosts. We supplement this information with a
morphological analysis of the ACS/HST images, optical spectroscopy,
and an X-ray spectral analysis.
Description:
In order to study the average X-ray properties of our Type-2 QSO
sample, we obtain a stacked X-ray spectrum using the EPIC-pn data.
Of the 33 Type-2 QSOs with a spectroscopic redshift, 31 have an
optical spectrum from the zCOSMOS survey, while the remaining two were
observed with the IMACS spectrograph at Magellan. We used the 31
zCOSMOS spectra to construct an average optical spectrum for the
Type-2 QSO sample.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 84 142 SED of type-2 QSOs
table2.dat 57 34 Morphological parameters of type-2 QSO hosts
at z≤1.2
--------------------------------------------------------------------------------
See also:
J/ApJS/172/29 : XMM-Newton survey in COSMOS field. I. (Hasinger+, 2007)
J/A+A/497/635 : XMM-Newton wide-field survey in COSMOS field (Cappelluti+ 2009)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- XMMC XMMC designation
7 A1 --- n_XMMC [a-f] Individual note (1)
9- 13 F5.2 [10-7W] logLX X-ray luminosity in the 0.5-10keV band
15- 18 F4.1 [cm-2] logNH Hydrogen column density
20- 23 F4.1 [cm-2] B_logNH ?=-1 Upper limit for logNH
25- 28 F4.1 [cm-2] b_logNH Lower limit for logNH
30- 34 F5.3 --- z Redshift
36 A1 --- f_z [sp] spectroscopic or photometric redshift
38- 41 F4.1 [Msun] logM* ?=- Stellar mass
43- 46 F4.1 [Msun] B_logM* ?=- Upper limit on logM*
48- 51 F4.1 [Msun] b_logM* ?=- Lower limit on logM*
53- 58 F6.1 Msun/yr SFR ?=- Stellar formation rate
60- 65 F6.1 Msun/yr B_SFR ?=- Upper limit on SFR
67- 72 F6.1 Msun/yr b_SFR ?=- Lower limit on SFR
74- 78 F5.1 mag UMAG ?=- Absolute U magnitude in AB system
80- 84 F5.1 mag BMAG ?=- Absolute B magnitude in AB system
--------------------------------------------------------------------------------
Note (1): Notes as follows:
a = The photometry is contaminated by the halo of a bright nearby star
b = The ACS image shows a source at 0.5" from the chosen counterpart,
therefore the IR photometry is the blending of the emission of these
two sources
c = For this objects we have photometry only in five filters
d = The photometry is contaminated by a nearby bright star
e = The quality of the SED fit is poor
f = The IR photometry is contaminated by a nearby source
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- XMMC XMMC designation
7- 11 F5.3 --- z Redshift
13- 17 F5.2 mag Imag I magnitude (in AB system)
19 I1 --- Class [1/3] Classification code (1)
21- 25 F5.2 pix r1/2 Half-light radius (1pix=0.03")
27- 31 F5.2 pix Rp Petrosian radius (1pix=0.03")
33- 36 F4.2 --- eps Ellipticity
38- 41 F4.2 --- C Concentration index
43- 46 F4.2 --- A Asymmetry index
48- 51 F4.2 --- G Gini coefficient (2)
53- 57 F5.2 --- M20 M20 index (3)
--------------------------------------------------------------------------------
Note (1): The morphological classes are as follows:
1 = bulge dominated
2 = disk dominated
3 = possible merger
Note (2): The Gini coefficient quantifies the non-uniformity in the light
distribution and strongly correlates with the concentration index for
local galaxies.
Note (3): The M20 index is the normalized second order moment of the
brightest 20% of the galaxy's flux.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 06-Feb-2012