J/A+A/537/A146 Stellar models with rotation. 0.8<M<120, Z=0.014 (Ekstrom+, 2012)
Grids of stellar models with rotation.
I. Models from 0.8 to 120M☉ at solar metallicity (Z = 0.014).
Ekstrom S., Georgy C., Eggenberger P., Meynet G., Mowlavi N.,
Wyttenbach A., Granada A., Decressin T., Hirschi R., Frischknecht U.,
Charbonnel C., Maeder A.
<Astron. Astrophys. 537, A146 (2012)>
=2012A&A...537A.146E 2012A&A...537A.146E
ADC_Keywords: Models, evolutionary ; Mass loss ; Stars, supergiant;
Stars, Wolf-Rayet
Keywords: stars: general - stars: evolution - stars: massive - stars: low-mass -
stars: rotation
Abstract:
Many topical astrophysical research areas, such as the properties of
planet host stars, the nature of the progenitors of different types of
supernovae and gamma ray bursts, and the evolution of galaxies,
require complete and homogeneous sets of stellar models at different
metallicities in order to be studied during the whole of cosmic
history. We present here a first set of models for solar metallicity,
where the effects of rotation are accounted for in a homogeneous way.
We computed a grid of 48 different stellar evolutionary tracks, both
rotating and non-rotating, at Z=0.014, spanning a wide mass range from
0.8 to 120M☉. For each of the stellar masses considered,
electronic tables provide data for 400 stages along the evolutionary
track and at each stage, a set of 43 physical data are given. These
grids thus provide an extensive and detailed data basis for
comparisons with the observations. The rotating models start on the
ZAMS with a rotation rate vini/vcrit=0.4. The evolution is
computed until the end of the central carbon-burning phase, the early
AGB phase, or the core helium-flash for, respectively, the massive,
intermediate, and both low and very low mass stars. The initial
abundances are those deduced by Asplund et collaborators, which best
fit the observed abundances of massive stars in the solar
neighbourhood. We update both the opacities and nuclear reaction
rates, and introduce new prescriptions for the mass-loss rates as
stars approach the Eddington and/or the critical velocity. We account
for both atomic diffusion and magnetic braking in our low-mass star
models. The present rotating models provide a good description of the
average evolution of non-interacting stars. In particular, they
reproduce the observed MS width, the positions of the red giant and
supergiant stars in the HR diagram, the observed surface compositions
and rotational velocities. Very interestingly, the enhancement of the
mass loss during the RSG stage, when the luminosity becomes
supra-Eddington in some outer layers, help models above 15-20 Msun to
lose a significant part of their hydrogen envelope and evolve back
into the blue part of the HR diagram. This result has interesting
consequences for the blue to red supergiant ratio, the minimum mass
for stars to become WR stars, and the maximum initial mass of stars
that explode as type II-P supernovae.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tables.dat 569 19200 Evolutionary tracks
iso.dat 341 35311 Isochrnones
files.tar 1356 54511 All the individual files for the 48 stellar
tracks and 74 isochrones
--------------------------------------------------------------------------------
See also:
J/A+A/508/355 : Scaled solar tracks and isochrones (Bertelli+, 2009)
Byte-by-byte Description of file: tables.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 F6.2 Msun Mini Initial mass
8- 12 F5.3 --- Zini [0.014] Initial metallicity
14 A1 --- Rot [nr] r for rotation, n for no rotation
16- 18 I3 --- Line [1/400] Number of selected point
20- 41 E22.15 yr Time Age
43- 53 F11.6 Msun Mass Actual mass
54- 63 F10.6 [Lsun] logL Luminosity in log scale
65- 73 F9.6 [K] logTe Effective temperature in log scale
75- 88 E14.7 --- X H surface abundance (mass fraction)
90-103 E14.7 --- Y He surface abundance (mass fraction)
105-118 E14.7 --- C12 12C surface abundance (mass fraction)
120-133 E14.7 --- C13 13C surface abundance (mass fraction)
135-148 E14.7 --- N14 14N surface abundance (mass fraction)
150-163 E14.7 --- O16 16O surface abundance (mass fraction)
165-178 E14.7 --- O17 17O surface abundance (mass fraction)
180-193 E14.7 --- O18 18O surface abundance (mass fraction)
195-208 E14.7 --- Ne20 20Ne surface abundance (mass fraction)
210-223 E14.7 --- Ne22 22Ne surface abundance (mass fraction)
225-234 E10.3 --- Al26 26Al surface abundance (mass fraction)
236-242 F7.4 --- QCC Convective core mass fraction
244-252 F9.6 [K] logTe.u Uncorrected effective temperature
in log scale (WR stars only)
254-261 F8.3 [Msun/yr] logdM/dt Mass loss rate in log scale
263-271 F9.6 [g/cm3] log(rhoc) Central density in log scale
273-281 F9.6 [K] logTc Central temperature in log scale
283-296 E14.7 --- Xc H central abundance (mass fraction)
298-311 E14.7 --- Yc 4He central abundance (mass fraction)
313-326 E14.7 --- C12c 12C central abundance (mass fraction)
328-341 E14.7 --- C13c 13C central abundance (mass fraction)
343-356 E14.7 --- N14c 14N central abundance (mass fraction)
358-371 E14.7 --- O16c 16O central abundance (mass fraction)
373-386 E14.7 --- O17c 17O central abundance (mass fraction)
388-401 E14.7 --- O18c 18O central abundance (mass fraction)
403-416 E14.7 --- Ne20c 20Ne central abundance (mass fraction)
418-431 E14.7 --- Ne22c 22Ne central abundance (mass fraction)
433-442 E10.3 --- Al26c 26Al central abundance (mass fraction)
444-453 E10.3 rad/s Omegas Surface angular velocity Ωs
455-464 E10.3 rad/s Omegac Central angular velocity Ωc
466-475 E10.3 --- oblat [0/1] Oblateness (Rpol/Req)
477-486 E10.3 --- dM/dtR Rotational dM/dt correction factor
488-496 E9.2 km/s vcrit1 First critical velocity (Ω-limit)
498-506 E9.2 km/s vcrit2 Second critical velocity
(ΩΓ-limit)
508-516 E9.2 km/s veq Equatorial velocity
518-526 F9.6 --- OOc [0/1] Ωsurf/Ωcrit
528-536 F9.6 --- Gedd [0/1] Eddington factor Γ
538-551 E14.7 Msun/yr dM/dtm Mechanical equatorial mass loss dM/dt
553-569 E17.10 10+53g.cm2/s Ltot Total angular momentum
--------------------------------------------------------------------------------
Byte-by-byte Description of file: iso.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 F4.1 [yr] logAge Initial age
6 A1 --- Rot [nr] r for rotation, n for no rotation
8- 14 F7.3 Msun Mini Initial mass
16- 24 F9.6 --- Zini [0.014] Initial metallicity
26- 31 F6.3 --- OOcini [0,0.4] Initial Ωsurf/Ωcrit
33- 40 F8.3 Msun Mass Actual mass at the age of the isochrone
43- 50 F8.4 [Lsun] logL Luminosity in log scale
54- 60 F7.4 [K] logTe Effective temperature in log scale
64- 70 F7.4 [K] logTe.nc Effective temperature not corrected for the
thickness of the wind (WR) in log scale
72- 80 F9.4 mag Mbol Bolometric magnitude
82- 90 F9.4 mag Vmag V-band absolute magnitude
93-100 F8.4 mag U-B U-B colour index
103-110 F8.4 mag B-V B-V colour index
113-120 F8.4 mag B2-V1 B2-V1 colour index
122-131 E10.3 cm Rpol Polar radius
133-139 F7.4 --- oblat Oblateness (Rpol/Req)
142-147 F6.3 [cm/s2] logg Polar effective surface gravity in log scale
149-158 E10.3 rad/s Oms Surface angular velocity Ωs
160-168 F9.2 km/s Veq Equatorial velocity
170-178 F9.2 km/s vcrit1 Critical velocity (Ω-limit)
180-188 F9.2 km/s vcrit2 Critical velocity (ΓΩ-limit)
190-196 F7.4 --- OOc Actual Ωsurf/Ωcrit
197-204 F8.3 [Msun/yr] logdM/dtr Radiative mass loss in log scale
205-212 F8.3 [Msun/yr] logdM/dtm Mechanical mass loss in log scale
214-220 F7.4 --- Gedd Eddington factor Γ
222-231 E10.3 --- H1 H surface abundance (mass fraction)
233-242 E10.3 --- He4 4He surface abundance (mass fraction)
244-253 E10.3 --- C12 12C surface abundance (mass fraction)
255-264 E10.3 --- C13 13C surface abundance (mass fraction)
266-275 E10.3 --- N14 14N surface abundance (mass fraction)
277-286 E10.3 --- O16 16O surface abundance (mass fraction)
288-297 E10.3 --- O17 17O surface abundance (mass fraction)
299-308 E10.3 --- O18 18O surface abundance (mass fraction)
310-319 E10.3 --- Ne20 20Ne surface abundance (mass fraction)
321-330 E10.3 --- Ne22 22Ne surface abundance (mass fraction)
332-341 E10.3 --- Al26 26Al surface abundance (mass fraction)
--------------------------------------------------------------------------------
Acknowledgements:
Sylvia Ekstrom, Sylvia.Ekstrom(at)unige.ch
History:
* 26-Jan-2012: Initial version
* 03-Apr-2012: data for "no rotation" in iso.dat corrected
(End) Sylvia Ekstrom [Geneva Obs.], Patricia Vannier [CDS] 16-Dec-2011