J/A+A/542/A98       Hydrocarbon solids. optEC(s) model. II.        (Jones, 2012)

Variations on a theme - the evolution of hydrocarbon solids: III. Size-dependent properties - the optEC(s)(a) model. Jones A.P. <Astron. Astrophys. 542, A98 (2012)> =2012A&A...542A..98J 2012A&A...542A..98J
ADC_Keywords: Interstellar medium; Models Keywords: dust, extinction - ISM: general - ISM: molecules Abstract: The properties of hydrogenated amorphous carbon (a-C:H) dust evolve in response to the local radiation field in the inter- stellar medium and the evolution of these properties is particularly dependent upon the particle size. A model for finite-sized, low-temperature amorphous hydrocarbon particles, based on the microphysical properties of random and defected networks of carbon and hydrogen atoms, with surfaces passivated by hydrogen atoms, has been developed. The eRCN/DG and the optEC(s) models have been combined, adapted and extended into a new optEC(s) (a) model that is used to calculate the optical properties of hydrocarbon grain materials down into the sub-nanometre size regime, where the particles contain only a few tens of carbon atoms. Description: optEC(s) model Kramers-Kronig-derived real part of the complex index of refraction, n, from the analytically-derived values of k for a-C:H as a function of wavelength [micron], energy E [eV] and band gap Eg [eV] particle radius = 0.33nm, 0.1nm, 1nm, 3nm, 10nm, 30nm and 100nm. optEC(s) model analytically-derived fits to the imaginary part of the complex index of refraction, k, for a-C:H as a function of wavelength [micron], energy E [eV] and band gap Eg [eV] particle radius = 0.33nm, 0.5nm, 1nm, 3nm, 10nm, 30nm and 100nm. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file k0_33nm.dat 159 1000 k for particle radius = 0.33nm k0_5nm.dat 159 1000 k for particle radius = 0.5nm k1nm.dat 159 1000 k for particle radius = 1nm k3nm.dat 159 1000 k for particle radius = 3nm k10nm.dat 159 1000 k for particle radius = 10nm k30nm.dat 159 1000 k for particle radius = 30nm k100nm.dat 159 1000 k for particle radius = 100nm n0_33nm.dat 159 1000 n for particle radius = 0.33nm n0_5nm.dat 159 1000 n for particle radius = 0.5nm n1nm.dat 159 1000 n for particle radius = 1nm n3nm.dat 159 1000 n for particle radius = 3nm n10nm.dat 159 1000 n for particle radius = 10nm n30nm.dat 159 1000 n for particle radius = 30nm n100nm.dat 159 1000 n for particle radius = 100nm -------------------------------------------------------------------------------- See also: J/A+A/540/A2 : Hydrocarbon solids. optEC(s) model (Jones, 2012) Byte-by-byte Description of file: n*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 E9.4 um lambda Wavelength 11- 19 E9.4 eV E Energy equivalent to wavelength 21- 29 E9.4 --- n0 Real part of m(n,k) Eg = -0.1 eV (Eg-) 31- 39 E9.4 --- n1 Real part of m(n,k) Eg = 0.0 eV 41- 49 E9.4 --- n2 Real part of m(n,k) Eg = 0.1 eV 51- 59 E9.4 --- n3 Real part of m(n,k) Eg = 0.25 eV 61- 69 E9.4 --- n4 Real part of m(n,k) Eg = 0.5 eV 71- 79 E9.4 --- n5 Real part of m(n,k) Eg = 0.75 eV 81- 89 E9.4 --- n6 Real part of m(n,k) Eg = 1.0 eV 91- 99 E9.4 --- n7 Real part of m(n,k) Eg = 1.5 eV 101-109 E9.4 --- n8 Real part of m(n,k) Eg = 1.15 eV 111-119 E9.4 --- n9 Real part of m(n,k) Eg = 1.75 eV 121-129 E9.4 --- n10 Real part of m(n,k) Eg = 2.0 eV 131-139 E9.4 --- n11 Real part of m(n,k) Eg = 2.25 eV 141-149 E9.4 --- n12 Real part of m(n,k) Eg = 2.5 eV 151-159 E9.4 --- n13 Real part of m(n,k) Eg = 2.67 eV (Eg+) -------------------------------------------------------------------------------- Byte-by-byte Description of file: k*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 E9.4 um lambda Wavelength 11- 19 E9.4 eV E Energy equivalent to wavelength 21- 29 E9.4 --- k0 Imaginary part of m(n,k) Eg = -0.1 eV (Eg-) 31- 39 E9.4 --- k1 Imaginary part of m(n,k) Eg = 0.0 eV 41- 49 E9.4 --- k2 Imaginary part of m(n,k) Eg = 0.1 eV 51- 59 E9.4 --- k3 Imaginary part of m(n,k) Eg = 0.25 eV 61- 69 E9.4 --- k4 Imaginary part of m(n,k) Eg = 0.5 eV 71- 79 E9.4 --- k5 Imaginary part of m(n,k) Eg = 0.75 eV 81- 89 E9.4 --- k6 Imaginary part of m(n,k) Eg = 1.0 eV 91- 99 E9.4 --- k7 Imaginary part of m(n,k) Eg = 1.5 eV 101-109 E9.4 --- k8 Imaginary part of m(n,k) Eg = 1.15 eV 111-119 E9.4 --- k9 Imaginary part of m(n,k) Eg = 1.75 eV 121-129 E9.4 --- k10 Imaginary part of m(n,k) Eg = 2.0 eV 131-139 E9.4 --- k11 Imaginary part of m(n,k) Eg = 2.25 eV 141-149 E9.4 --- k12 Imaginary part of m(n,k) Eg = 2.5 eV 151-159 E9.4 --- k13 Imaginary part of m(n,k) Eg = 2.67 eV (Eg+) -------------------------------------------------------------------------------- History: * 15-Jun-2012: First version * 15-Aug-2012: Corrected version, from author Acknowledgements: Anthony Jones, Anthony.Jones(at)ias.u-psud.fr References: Jones, Paper I, 2012A&A...540A...1J 2012A&A...540A...1J Jones, Paper II, 2012A&A...540A...2J 2012A&A...540A...2J, Cat. J/A+A/540/A2
(End) Anthony Jones [IAS], Patricia Vannier [CDS] 16-Apr-2012
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line