J/A+A/557/A44   The doubly lensed quasar SDSS J1001+5027   (Rathna Kumar+, 2013)

COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XIV. Time delay of the doubly lensed quasar SDSS J1001+5027. Rathna Kumar S., Tewes M., Stalin C.S., Courbin F., Asfandiyarov I., Meylan G., Eulaers E., Prabhu T.P., Magain P., Van Winckel H., Ehgamberdiev Sh. <Astron. Astrophys. 557, A44 (2013)> =2013A&A...557A..44R 2013A&A...557A..44R
ADC_Keywords: QSOs ; Gravitational lensing ; Photometry, RI Keywords: gravitational lensing: strong - cosmological parameters - quasars: individual: SDSS J1001+5027 Abstract: This paper presents optical R-band light curves and the time delay of the doubly imaged gravitationally lensed quasar SDSS J1001+5027 at a redshift of 1.838. We have observed this target for more than six years, between March 2005 and July 2011, using the 1.2-m Mercator Telescope, the 1.5-m telescope of the Maidanak Observatory and the 2-m Himalayan Chandra Telescope. Our resulting light curves are composed of 443 independent epochs, and show strong intrinsic quasar variability, with an amplitude of the order of 0.2 magnitudes. From this data, we measure the time delay using five different methods, all relying on distinct approaches. One of these techniques is a new development presented in this paper. All our time-delay measurements are perfectly compatible. By combining them, we conclude that image A is leading B by 119.3±3.3 days (1σ, 2.8%), including systematic errors. It has been shown recently that such accurate time-delay measurements offer a highly complementary probe of dark energy and spatial curvature, as they independently constrain the Hubble constant. The next mandatory step towards using SDSS J1001+5027 in this context will be the measurement of the redshift of the lensing galaxy, in combination with deep HST imaging. Description: These data are R-band light curves of the doubly lensed quasar SDSS J1001+5027, as displayed in Fig. 4 of the paper. They cover 6.5 years, from March 2005 to July 2011. The light curves are obtained using deconvolution photometry of images from 3 different telescopes, for a total of 443 epochs. Several quasar variability features strongly constrain the time delay between the quasar images. Objects: --------------------------------------------------------------------- RA (2000) DE Designation(s) --------------------------------------------------------------------- 10 01 28.61 +50 27 57.0 SDSS J1001+5027 = SDSS J100128.61+502756.9 --------------------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file fig4.dat 54 443 R-band light curves of SDSS J1001+5027 -------------------------------------------------------------------------------- Byte-by-byte Description of file: fig4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 13 F13.5 d HJD Heliocentric Julian date 15- 21 F7.5 mag RmagA [0.061/0.351] Relative magnitude of quasar image A 23- 29 F7.5 mag e_RmagA Magnitude uncertainty of quasar image A 31- 37 F7.5 mag RmagB [0.490/0.752] Relative magnitude of quasar image B 39- 45 F7.5 mag e_RmagB Magnitude uncertainty of quasar image B 47- 54 A8 --- Tel Telescope used (1) -------------------------------------------------------------------------------- Note (1): Telescope as follows: Mercator = the 1.2-m Mercator Telescope located at the Roque de los Muchachos Observatory on La Palma (Spain) Maidanak = the 1.5-m telescope of the Maidanak Observatory in Pamir Alai (Uzbekistan) HCT = the 2-m Himalayan Chandra Telescope (HCT) located at the Indian Astronomical Observatory in Hanle (India) -------------------------------------------------------------------------------- Acknowledgement: Malte Tewes, malte.tewes( at )epfl.ch, Ecole polytechnique federale de Lausanne References : Eigenbrod et al., Paper I 2005A&A...436...25E 2005A&A...436...25E Eigenbrod et al., Paper II 2006A&A...451..747E 2006A&A...451..747E Eigenbrod et al., Paper III 2006A&A...451..759E 2006A&A...451..759E Saha et al., Paper IV 2006A&A...450..461S 2006A&A...450..461S Vuissoz et al., Paper V 2007A&A...464..845V 2007A&A...464..845V Eigenbrod et al., Paper VI 2007A&A...465...51E 2007A&A...465...51E Vuissoz et al., Paper VII 2008A&A...488..481V 2008A&A...488..481V, Cat. J/A+A/488/481 Chantry et al., Paper VIII 2010A&A...522A..95C 2010A&A...522A..95C Courbin et al., Paper IX 2011A&A...536A..53C 2011A&A...536A..53C, Cat. J/A+A/536/A53 Sluse et al., Paper X 2012A&A...538A..99S 2012A&A...538A..99S Tewes et al., Paper XI 2013A&A...553A.120T 2013A&A...553A.120T Eulaers et al., Paper XII 2013A&A...553A.121E 2013A&A...553A.121E, Cat. J/A+A/553/A121 Tewes et al., Paper XIII 2013A&A...556A..22T 2013A&A...556A..22T, Cat. J/A+A/556/A22
(End) Malte Tewes [EPFL] 08-Jul-2013
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line