J/A+A/558/A103  Stellar models with rotation. 0.8<M<120, Z=0.002 (Georgy+, 2013)

Grids of stellar models with rotation. III. Models from 0.8 to 120 Msun at a metallicity Z = 0.002. Georgy C., Ekstrom S., Eggenberger P., Meynet G., Haemmerle L., Maeder A., Granada A., Groh J.H., Hirschi R., Mowlavi N., Yusof N., Charbonnel C., Decressin T., Barblan F. <Astron. Astrophys. 558, A103 (2013)> =2013A&A...558A.103G 2013A&A...558A.103G
ADC_Keywords: Models, evolutionary ; Mass loss ; Stars, supergiant ; Magellanic Clouds Keywords: stars: general - stars: evolution - stars: rotation - stars: massive - stars:low-mass Abstract: We study the impact of a subsolar metallicity on various properties of non-rotating and rotating stars, such as surface velocities and abundances, lifetimes, evolutionary tracks, and evolutionary scenarios. We provide a grid of single star models covering a mass range of 0.8 to 120M{sun} with an initial metallicity Z=0.002 with and without rotation. We discuss the impact of a change in the metallicity by comparing the current tracks with models computed with exactly the same physical ingredients but with a metallicity Z=0.014 (solar). We show that the width of the main-sequence (MS) band in the upper part of the Hertzsprung-Russell diagram (HRD), for luminosity above log(L/L)>5.5, is very sensitive to rotational mixing. Strong mixing significantly reduces the MS width. Here for the first time over the whole mass range, we confirm that surface enrichments are stronger at low metallicity provided that comparisons are made for equivalent initial mass, rotation, and evolutionary stage. We show that the enhancement factor due to a lowering of the metallicity (all other factors kept constant) increases when the initial mass decreases. Present models predict an upper luminosity for the red supergiants (RSG) of log (L/L) around 5.5 at Z=0.002 in agreement with the observed upper limit of RSG in the Small Magellanic Cloud. We show that models using shear diffusion coefficient, which is calibrated to reproduce the surface enrichments observed for MS B-type stars at Z=0.014, can also reproduce the stronger enrichments observed at low metallicity. In the framework of the present models, we discuss the factors governing the timescale of the first crossing of the Hertzsprung gap after the MS phase. We show that any process favouring a deep localisation of the H-burning shell (steep gradient at the border of the H-burning convective core, low CNO content), and/or the low opacity of the H-rich envelope favour a blue position in the HRD for the whole, or at least a significant fraction, of the core He-burning phase. Description: Data of the 24 non-rotating and 24 rotating models. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tables.dat 569 19200 Evolutionary tracks files.tar 1274 19200 All the individual files for the 48 stellar tracks -------------------------------------------------------------------------------- See also: J/A+A/537/A146 : Stellar models with rotation. 0.8<M<120, Z=0.014, Paper I. (Ekstrom+, 2012) J/A+A/543/A108 : Grid of stellar models, asteroseismology (Lagarde+, 2012) Byte-by-byte Description of file: tables.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 F6.2 Msun Mini [0.8/120] Initial mass 8- 12 F5.3 --- Zini [0.002] Initial metallicity 14 A1 --- Rot [nr] r for rotation, n for no rotation 16- 18 I3 --- Line [1/400] Number of selected point 20- 41 E22.15 yr Time Age 43- 53 F11.6 Msun Mass Actual mass 54- 63 F10.6 [Lsun] logL Luminosity in log scale 65- 73 F9.6 [K] logTe Effective temperature in log scale 75- 88 E14.7 --- X H surface abundance (mass fraction) 90-103 E14.7 --- Y He surface abundance (mass fraction) 105-118 E14.7 --- C12 12C surface abundance (mass fraction) 120-133 E14.7 --- C13 13C surface abundance (mass fraction) 135-148 E14.7 --- N14 14N surface abundance (mass fraction) 150-163 E14.7 --- O16 16O surface abundance (mass fraction) 165-178 E14.7 --- O17 17O surface abundance (mass fraction) 180-193 E14.7 --- O18 18O surface abundance (mass fraction) 195-208 E14.7 --- Ne20 20Ne surface abundance (mass fraction) 210-223 E14.7 --- Ne22 22Ne surface abundance (mass fraction) 225-234 E10.3 --- Al26 26Al surface abundance (mass fraction) 236-242 F7.4 --- QCC Convective core mass fraction 244-252 F9.6 [K] logTe.u Uncorrected effective temperature in log scale (WR stars only) 254-261 F8.3 [Msun/yr] logdM/dt Mass loss rate in log scale 263-271 F9.6 [g/cm3] log(rhoc) Central density in log scale 273-281 F9.6 [K] logTc Central temperature in log scale 283-296 E14.7 --- Xc H central abundance (mass fraction) 298-311 E14.7 --- Yc 4He central abundance (mass fraction) 313-326 E14.7 --- C12c 12C central abundance (mass fraction) 328-341 E14.7 --- C13c 13C central abundance (mass fraction) 343-356 E14.7 --- N14c 14N central abundance (mass fraction) 358-371 E14.7 --- O16c 16O central abundance (mass fraction) 373-386 E14.7 --- O17c 17O central abundance (mass fraction) 388-401 E14.7 --- O18c 18O central abundance (mass fraction) 403-416 E14.7 --- Ne20c 20Ne central abundance (mass fraction) 418-431 E14.7 --- Ne22c 22Ne central abundance (mass fraction) 433-442 E10.3 --- Al26c 26Al central abundance (mass fraction) 444-453 E10.3 rad/s Omegas Surface angular velocity Ωs 455-464 E10.3 rad/s Omegac Central angular velocity Ωc 466-475 E10.3 --- oblat [0/1] Oblateness (Rpol/Req) 477-486 E10.3 --- dM/dtR Rotational dM/dt correction factor 488-496 E9.2 km/s vcrit1 First critical velocity (Ω-limit) 498-506 E9.2 km/s vcrit2 Second critical velocity (ΩΓ-limit) 508-516 E9.2 km/s veq Equatorial velocity 518-526 F9.6 --- OOc [0/1] Ωsurfcrit 528-536 F9.6 --- Gedd [0/1] Eddington factor Γ 538-551 E14.7 Msun/yr dM/dtm Mechanical equatorial dM/dt 553-569 E17.10 10+53g.cm2/s Ltot Total angular momentum -------------------------------------------------------------------------------- Acknowledgements: Cyril Georgy, c.georgy(at)keele.ac.uk References: Ekstrom et al., Paper I 2012A&A...537A.146E 2012A&A...537A.146E, Cat. J/A+A/537/A146 Georgy et al., Paper II 2012A&A...542A..29G 2012A&A...542A..29G
(End) Cyril Georgy [Keele Univ.], Patricia Vannier [CDS] 26-Aug-2013
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line