J/A+A/558/A131   Model spectra of hot stars at the pre-SN stage    (Groh+, 2013)

Fundamental properties of core-collapse Supernova and GRB progenitors: predicting the look of massive stars before death. Groh J.H., Meynet G., Georgy C., Ekstrom S. <Astron. Astrophys. 558, A131 (2013)> =2013A&A...558A.131G 2013A&A...558A.131G
ADC_Keywords: Supernovae ; Models, atmosphere ; Models, evolutionary ; Spectra, ultraviolet ; Spectra, infrared Keywords: stars: evolution - supernovae: general - stars: massive - stars: winds, outflows - gamma-ray burst: general - stars: rotation Abstract: We investigate the fundamental properties of core-collapse Supernova (SN) progenitors from single stars at solar metallicity. We combine Geneva stellar evolutionary models with initial masses of Mini=20-120M with atmospheric/wind models using CMFGEN. We provide synthetic photometry and high-resolution spectra of hot stars at the pre-SN stage. For Mini=9-20M, we supplement our analysis using publicly available MARCS model atmospheres of RSGs. We employ observational criteria of spectroscopic classification and find that massive stars, depending on Mini and rotation, end their lives as red supergiants (RSG), yellow hypergiants (YHG), luminous blue variables (LBV), and Wolf-Rayet (WR) stars of the WN and WO spectral types. For rotating models, we obtain the following types of SN progenitors: WO1-3 (Mini≤32M), WN10-11 (25<Mini< 32M), LBV (20≤Mini<25M), G1 Ia+ (18<Mini<20M), and RSGs (9≤Mini≤18M). For non-rotating models, we find spectral types WO1-3 (Mini>40M), WN7-8 (25<Mini≤40M), WN11h/LBV (20<Mini≤25M), and RSGs (9≤Mini≤20M). Our rotating models indicate that SN IIP progenitors are all RSG, SN IIL/b progenitors are 56% LBVs and 44% YHGs, SN Ib progenitors are 96% WN10-11 and 4% WOs, and SN Ic progenitors are all WO stars. We find that not necessarily the most massive and luminous SN progenitors are the brighter ones in a given filter. We show that SN IIP progenitors (RSGs) are bright in the RIJHK_S filters and faint in the UB filters. SN IIL/b progenitors (LBVs and YHGs), and SN Ib progenitors (WNs) are relatively bright in optical/IR filters, while SN Ic progenitors (WOs) are faint in all optical filters. We argue that SN Ib and Ic progenitors from single stars should be undetectable in the available pre-explosion images with the current magnitude limits, in agreement with observational results. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file listsp.dat 400 30 Spectra initial parameters sp/* . 15 Individual spectra spn/* . 15 Individual normalized spectra -------------------------------------------------------------------------------- Byte-by-byte Description of file: listsp.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 48 A48 --- FileName Name of file with spectrum in subdirectories sp or spn 50- 55 I6 K T20 Temperature at τross=20 57- 62 I6 K T2/3 Temperature at τross=2/3 64- 70 F7.4 Rsun R20 Radius at τross=20 72- 78 F7.4 Rsun R2/3 Radius at τross=2/3 80- 84 F5.3 [cm/s2] logg20 log10(Gravity) at τross=20 86- 90 F5.3 [cm/s2] logg2/3 log10(Gravity) at τross=2/3 92- 98 I7 Lsun L Luminosity 100-109 F10.7 Msun M [7/31] Mass 111-120 F10.7 [Msun/yr] Mdot log10(Mass-loss rate) 122-130 F9.4 km/s Vinf Wind terminal velocity v 132 I1 --- beta [1] steepness β of velocity law 134-136 F3.1 --- Finf [0.1] Clumping parameter f at infinity 138-140 I3 km/s Vcl [20/200] Velocity where clumps start to form (20 or 200) 142-150 E9.4 --- A(H) Hydrogen abundance (mass fraction) 152-160 E9.4 --- A(He) Helium abundance (mass fraction) 162-170 E9.4 --- A(C) Carbon abundance (mass fraction) 172-180 E9.4 --- A(N) Nitrogen abundance (mass fraction) 182-190 E9.4 --- A(O) Oxygen abundance (mass fraction) 192-200 E9.4 --- A(Fl) Fluorine abundance (mass fraction) 202-210 E9.4 --- A(Ne) Neon abundance (mass fraction) 212-220 E9.4 --- A(Na) Sodium abundance (mass fraction) 222-230 E9.4 --- A(Mg) Magnesium abundance (mass fraction) 232-240 E9.4 --- A(Al) Aluminun abundance (mass fraction) 242-250 E9.4 --- A(Si) Silicon abundance (mass fraction) 252-260 E9.4 --- A(P) Phosphorus abundance (mass fraction) 262-270 E9.4 --- A(S) Sulphur abundance (mass fraction) 272-280 E9.4 --- A(Cl) Chlorine abundance (mass fraction) 282-290 E9.4 --- A(Ar) Argon abundance (mass fraction) 292-300 E9.4 --- A(K) Potassium abundance (mass fraction) 302-310 E9.4 --- A(Ca) Calcium abundance (mass fraction) 312-320 E9.4 --- A(Sc) Scandium abundance (mass fraction) 322-330 E9.4 --- A(Ti) Titanium abundance (mass fraction) 332-340 E9.4 --- A(Va) Vanadium abundance (mass fraction) 342-350 E9.4 --- A(Cr) Chromium abundance (mass fraction) 352-360 E9.4 --- A(Mn) Manganese abundance (mass fraction) 362-370 E9.4 --- A(Fe) Iron abundance (mass fraction) 372-380 E9.4 --- A(Co) Cobalt abundance (mass fraction) 382-390 E9.4 --- A(Ni) Nickel abundance (mass fraction) 392-400 E9.4 --- A(Ba) Barium abundance (mass fraction) -------------------------------------------------------------------------------- Byte-by-byte Description of file (# headlines): sp/* -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 4- 15 E12.7 0.1nm lambda Wavelength (Angstrom) 20- 32 E13.7 10mW/m2/nm Flux Flux at 1 kpc (erg/s/cm2/Angstrom) -------------------------------------------------------------------------------- Byte-by-byte Description of file (# headlines): spn/* -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 4- 15 E12.7 0.1nm lambda Wavelength (Angstrom) 20- 32 E13.7 --- cnFlux Continuum-normalized flux -------------------------------------------------------------------------------- Acknowledgements: Jose H. Groh, jose.groh(at)unige.ch
(End) Jose Groh [Geneva Obs., Switzerland], Patricia Vannier [CDS] 04-Oct-2013
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line