J/A+A/562/A56 Cyanomethyl anion and its deuterated derivatives (Majumdar+, 2014)
Spectroscopic characteristics of the cyanomethyl anion and its deuterated
derivatives.
Majumdar L., Das. A., Chakrabarti S.K.
<Astron. Astrophys. 562, A56 (2014)>
=2014A&A...562A..56M 2014A&A...562A..56M
ADC_Keywords: Atomic physics
Keywords: astrochemistry - methods: numerical - ISM: abundances - ISM: clouds -
ISM: molecules - radio lines: ISM
Abstract:
It has long been suggested that CH2CN- (cyanomethyl anion) might
be a carrier of one of the many poorly characterized diffuse
interstellar bands. In this paper, our aim is to study various forms
(ionic, neutral, and deuterated isotopomer) of CH2CN (cyanomethyl
radical) in the interstellar medium.
The aim of this paper is to predict spectroscopic characteristics of
various forms of CH2CN and its deuterated derivatives. Moreover, we
would like to model the interstellar chemistry for predicting the
column densities of such species around dark cloud conditions.
Description:
We performed detailed quantum chemical simulations to present the
spectral properties (infrared, electronic, and rotational) of various
forms of the cyanomethyl radical. Moller-Plesset perturbation theory
along with the triple-zeta, correlation-consistent basis set is used
to obtain different spectroscopic constants of CH2CN-,
CHDCN-, and CD2CN- in the gas phase.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tableb1.dat 68 244 Vibrational frequencies of different forms of
CH2CN in gas phase and water ice at
B3LYP/6-311G++ level
tableb2.dat 58 74 *Rotational transitions for gas phase CH2CN-
by considering the experimental values of the
spectroscopic constants
tableb3.dat 60 78 *Computed rotational transitions for gas phase
CHDCN- by considering our calculated values
of spectroscopic constants
tableb4.dat 65 819 *Computed rotational transitions for gas phase
CD2CN- by considering the experimental
values of spectroscopic constants
--------------------------------------------------------------------------------
Note on tableb2.dat: Errors on the computed line frequencies are related to the
errors on the constants given in Table 2 and from there, the error
(dν/ν) on any line frequency for CH2CN- is found to be =6.16x10-5.
Note on tableb3.dat: Since there are no experimentally fitted rotational and
distortional constants available, we are only providing the line frequencies
based on our theoreticaly calculated spectroscopic constants given in Table 2.
Note on tableb4.dat: Errors on the computed line frequencies are related to
the errors on the constants given in Table 2 and from there, the error
(dν/ν) on any line frequency for CD2CN- is found to be =3.77x10-5.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 A7 --- Species Species name (CH2CN, CHDCN or CD2CN)
9- 15 A7 --- Charge Charge (Anion, Neutral or Cation)
17- 23 A7 --- Spin Spin state (Singlet, Doublet, Triplet,
Quartet, Quintet, or Sextet)
25- 31 F7.2 cm-1 wng ? Peak positions (Gas phase) Wavenumber
33- 38 F6.1 cm-1 wng2 ? Computed vibrational (harmonic) frequencies
by Fortenberry, Crawford & Lee
(2013ApJ...762..121F 2013ApJ...762..121F)
40- 48 F9.4 --- Absg ? Absorbance (Gas phase)
50- 56 F7.2 cm-1 wnH ? Peak positions (H2O ice) Wavenumber
58- 68 F11.4 --- AbsH ? Absorbance (H2O ice)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 F11.4 MHz Freq Frequency
13- 19 F7.4 [nm+2/MHz] logI Base 10 logarithm of the integrated
intensity at 300K
21 I1 --- d Degrees of freedom in the rotational
partition function (G1)
23- 29 F7.4 cm-1 Elo Lower state energy relative to the lowest
energy level in the ground vibrionic state
31- 32 I2 --- gup Upper state degeneracy (G2)
34- 36 I3 --- QnF Coding for the format of quantum numbers (G3)
40- 41 I2 --- Q1up Upper state quantum number
42- 43 I2 --- Q2up Upper state quantum number
44- 45 I2 --- Q3up Upper state quantum number
46- 47 I2 --- Q4up Upper state quantum number
51- 52 I2 --- Q1lo Lower state quantum number
53- 54 I2 --- Q2lo Lower state quantum number
55- 56 I2 --- Q3lo Lower state quantum number
57- 58 I2 --- Q4lo Lower state quantum number
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 F11.4 MHz Freq Frequency
13- 19 F7.4 [nm+2/MHz] logI Base 10 logarithm of the integrated
intensity at 300K
21 I1 --- d Degrees of freedom in the rotational
partition function (G1)
23- 29 F7.4 cm-1 Elo Lower state energy relative to the lowest
energy level in the ground vibrionic state
31- 32 I2 --- gup Upper state degeneracy (G2)
34- 36 I3 --- QnF Coding for the format of quantum numbers (G3)
40- 41 I2 --- Q1up Upper state quantum number
42- 43 I2 --- Q2up Upper state quantum number
44- 45 I2 --- Q3up Upper state quantum number
46- 47 I2 --- Q4up Upper state quantum number
48- 49 I2 --- Q5up Upper state quantum number
51- 52 I2 --- Q1lo Lower state quantum number
53- 54 I2 --- Q2lo Lower state quantum number
55- 56 I2 --- Q3lo Lower state quantum number
57- 58 I2 --- Q4lo Lower state quantum number
59- 60 I2 --- Q5lo Lower state quantum number
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 F11.4 MHz Freq Frequency
13- 19 F7.4 [nm+2/MHz] logI Base 10 logarithm of the integrated
intensity at 300K
21 I1 --- d Degrees of freedom in the rotational
partition function (G1)
23- 29 F7.4 cm-1 Elo Lower state energy relative to the lowest
energy level in the ground vibrionic state
31- 32 I2 --- gup Upper state degeneracy (G2)
34- 36 I3 --- QnF Coding for the format of quantum numbers (G3)
40- 41 I2 --- Q1up Upper state quantum number
42- 43 I2 --- Q2up Upper state quantum number
44- 45 I2 --- Q3up Upper state quantum number
46- 47 I2 --- Q4up Upper state quantum number
48- 49 I2 --- Q5up Upper state quantum number
50- 51 I2 --- Q6up Upper state quantum number
54- 55 I2 --- Q1lo Lower state quantum number
56- 57 I2 --- Q2lo Lower state quantum number
58- 59 I2 --- Q3lo Lower state quantum number
60- 61 I2 --- Q4lo Lower state quantum number
62- 63 I2 --- Q5lo Lower state quantum number
64- 65 I2 --- Q6lo Lower state quantum number
--------------------------------------------------------------------------------
Global notes:
Note (G1): Degrees as follows:
0 = atoms
2 = linear molecules
3 = nonlinear molecules
Note (G2): gup=gI x gN, where gI is the spin statistical weight and
gN =2N+1 the rotational degeneracy.
Note (G3): Coding for the format of quantum numbers.
QnF=100 x Q + 10 x H + NQn; NQn is the number of quantum numbers for
each state; H indicates the number of half integer quantum numbers;
Qmod5, the residual when Q is divided by 5, gives the number of
principal quantum numbers (without the spin designating ones).
--------------------------------------------------------------------------------
Acknowledgements:
Ankan Das, ankan.das(at)gmail.com
(End) Patricia Vannier [CDS] 19-Dec-2013