J/A+A/562/A56 Cyanomethyl anion and its deuterated derivatives (Majumdar+, 2014)

Spectroscopic characteristics of the cyanomethyl anion and its deuterated derivatives. Majumdar L., Das. A., Chakrabarti S.K. <Astron. Astrophys. 562, A56 (2014)> =2014A&A...562A..56M 2014A&A...562A..56M
ADC_Keywords: Atomic physics Keywords: astrochemistry - methods: numerical - ISM: abundances - ISM: clouds - ISM: molecules - radio lines: ISM Abstract: It has long been suggested that CH2CN- (cyanomethyl anion) might be a carrier of one of the many poorly characterized diffuse interstellar bands. In this paper, our aim is to study various forms (ionic, neutral, and deuterated isotopomer) of CH2CN (cyanomethyl radical) in the interstellar medium. The aim of this paper is to predict spectroscopic characteristics of various forms of CH2CN and its deuterated derivatives. Moreover, we would like to model the interstellar chemistry for predicting the column densities of such species around dark cloud conditions. Description: We performed detailed quantum chemical simulations to present the spectral properties (infrared, electronic, and rotational) of various forms of the cyanomethyl radical. Moller-Plesset perturbation theory along with the triple-zeta, correlation-consistent basis set is used to obtain different spectroscopic constants of CH2CN-, CHDCN-, and CD2CN- in the gas phase. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 68 244 Vibrational frequencies of different forms of CH2CN in gas phase and water ice at B3LYP/6-311G++ level tableb2.dat 58 74 *Rotational transitions for gas phase CH2CN- by considering the experimental values of the spectroscopic constants tableb3.dat 60 78 *Computed rotational transitions for gas phase CHDCN- by considering our calculated values of spectroscopic constants tableb4.dat 65 819 *Computed rotational transitions for gas phase CD2CN- by considering the experimental values of spectroscopic constants -------------------------------------------------------------------------------- Note on tableb2.dat: Errors on the computed line frequencies are related to the errors on the constants given in Table 2 and from there, the error (dν/ν) on any line frequency for CH2CN- is found to be =6.16x10-5. Note on tableb3.dat: Since there are no experimentally fitted rotational and distortional constants available, we are only providing the line frequencies based on our theoreticaly calculated spectroscopic constants given in Table 2. Note on tableb4.dat: Errors on the computed line frequencies are related to the errors on the constants given in Table 2 and from there, the error (dν/ν) on any line frequency for CD2CN- is found to be =3.77x10-5. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- Species Species name (CH2CN, CHDCN or CD2CN) 9- 15 A7 --- Charge Charge (Anion, Neutral or Cation) 17- 23 A7 --- Spin Spin state (Singlet, Doublet, Triplet, Quartet, Quintet, or Sextet) 25- 31 F7.2 cm-1 wng ? Peak positions (Gas phase) Wavenumber 33- 38 F6.1 cm-1 wng2 ? Computed vibrational (harmonic) frequencies by Fortenberry, Crawford & Lee (2013ApJ...762..121F 2013ApJ...762..121F) 40- 48 F9.4 --- Absg ? Absorbance (Gas phase) 50- 56 F7.2 cm-1 wnH ? Peak positions (H2O ice) Wavenumber 58- 68 F11.4 --- AbsH ? Absorbance (H2O ice) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 F11.4 MHz Freq Frequency 13- 19 F7.4 [nm+2/MHz] logI Base 10 logarithm of the integrated intensity at 300K 21 I1 --- d Degrees of freedom in the rotational partition function (G1) 23- 29 F7.4 cm-1 Elo Lower state energy relative to the lowest energy level in the ground vibrionic state 31- 32 I2 --- gup Upper state degeneracy (G2) 34- 36 I3 --- QnF Coding for the format of quantum numbers (G3) 40- 41 I2 --- Q1up Upper state quantum number 42- 43 I2 --- Q2up Upper state quantum number 44- 45 I2 --- Q3up Upper state quantum number 46- 47 I2 --- Q4up Upper state quantum number 51- 52 I2 --- Q1lo Lower state quantum number 53- 54 I2 --- Q2lo Lower state quantum number 55- 56 I2 --- Q3lo Lower state quantum number 57- 58 I2 --- Q4lo Lower state quantum number -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 F11.4 MHz Freq Frequency 13- 19 F7.4 [nm+2/MHz] logI Base 10 logarithm of the integrated intensity at 300K 21 I1 --- d Degrees of freedom in the rotational partition function (G1) 23- 29 F7.4 cm-1 Elo Lower state energy relative to the lowest energy level in the ground vibrionic state 31- 32 I2 --- gup Upper state degeneracy (G2) 34- 36 I3 --- QnF Coding for the format of quantum numbers (G3) 40- 41 I2 --- Q1up Upper state quantum number 42- 43 I2 --- Q2up Upper state quantum number 44- 45 I2 --- Q3up Upper state quantum number 46- 47 I2 --- Q4up Upper state quantum number 48- 49 I2 --- Q5up Upper state quantum number 51- 52 I2 --- Q1lo Lower state quantum number 53- 54 I2 --- Q2lo Lower state quantum number 55- 56 I2 --- Q3lo Lower state quantum number 57- 58 I2 --- Q4lo Lower state quantum number 59- 60 I2 --- Q5lo Lower state quantum number -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 F11.4 MHz Freq Frequency 13- 19 F7.4 [nm+2/MHz] logI Base 10 logarithm of the integrated intensity at 300K 21 I1 --- d Degrees of freedom in the rotational partition function (G1) 23- 29 F7.4 cm-1 Elo Lower state energy relative to the lowest energy level in the ground vibrionic state 31- 32 I2 --- gup Upper state degeneracy (G2) 34- 36 I3 --- QnF Coding for the format of quantum numbers (G3) 40- 41 I2 --- Q1up Upper state quantum number 42- 43 I2 --- Q2up Upper state quantum number 44- 45 I2 --- Q3up Upper state quantum number 46- 47 I2 --- Q4up Upper state quantum number 48- 49 I2 --- Q5up Upper state quantum number 50- 51 I2 --- Q6up Upper state quantum number 54- 55 I2 --- Q1lo Lower state quantum number 56- 57 I2 --- Q2lo Lower state quantum number 58- 59 I2 --- Q3lo Lower state quantum number 60- 61 I2 --- Q4lo Lower state quantum number 62- 63 I2 --- Q5lo Lower state quantum number 64- 65 I2 --- Q6lo Lower state quantum number -------------------------------------------------------------------------------- Global notes: Note (G1): Degrees as follows: 0 = atoms 2 = linear molecules 3 = nonlinear molecules Note (G2): gup=gI x gN, where gI is the spin statistical weight and gN =2N+1 the rotational degeneracy. Note (G3): Coding for the format of quantum numbers. QnF=100 x Q + 10 x H + NQn; NQn is the number of quantum numbers for each state; H indicates the number of half integer quantum numbers; Qmod5, the residual when Q is divided by 5, gives the number of principal quantum numbers (without the spin designating ones). -------------------------------------------------------------------------------- Acknowledgements: Ankan Das, ankan.das(at)gmail.com
(End) Patricia Vannier [CDS] 19-Dec-2013
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line