J/A+A/563/A137      THz spectrum of methylamine              (Motiyenko+, 2014)

Rotational spectroscopy of methylamine up to 2.6 THz. Motiyenko R.A., Ilyushin, V.V., Drouin B.J., Yu.S., Margules L. <Astron. Astrophys. 563, A137 (2014)> =2014A&A...563A.137M 2014A&A...563A.137M
ADC_Keywords: Atomic physics ; Interstellar medium ; Millimetric/submm sources Keywords: ISM: molecules - methods: laboratory: molecular - submillimeter: ISM - molecular data - line: identification Abstract: Methylamine (CH3NH2) is the simplest primary alkylamine and has been detected in the interstellar medium. The molecule is relatively light, with the 50K Boltzmann peak appearing near 800GHz. However, reliable predictions for its rotational spectrum are available only up to 500GHz. Spectroscopic analyses have been complicated by the two large amplitude motions: internal rotation of the methyl top and inversion of the amino group. The aims is to provide reliable predictions of the methylamine ground state rotational spectrum above 500GHz we studied its rotational spectrum in the frequency range from 500 to 2650GHz. The spectra of methylamine were recorded using the spectrometers based on Schottky diode frequency multiplication chains in the Lille laboratory (500-945GHz) and in JPL (1060-2660GHz). The analysis of the rotational spectrum of methylamine in the ground vibrational state was performed on the basis of the group-theoretical high barrier tunneling Hamiltonian developed for methylamine by Ohashi and Hougen. In the recorded spectra we have assigned 1849 new rotational transitions of methylamine. They were fitted together with previously published data to a Hamiltonian model that uses 76 parameters with overall weighted rms deviation of 0.87. On the basis of the new spectroscopic results, predictions of transition frequencies in the frequency range up to 3THz with J<50 and Ka<20 are presented. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 59 3343 Measured rotational transitions of methylamine (CH3NH2) in the ground vibrational state table3.dat 73 86056 Predicted transitions of methylamine in the ground vibrational state -------------------------------------------------------------------------------- See also: J/A+A/493/565 : Deuterated and 15N ethyl cyanides (Margules+, 2009) J/A+A/538/A51 : Rotational spectrum of CH3CH(NH2)CN (Mollendal+, 2012) J/A+A/538/A119 : Spectrum of 18O-methyl formate (HCO18OCH3) (Tercero+ 2012) J/A+A/540/A51 : Submm spectrum of deuterated glycolaldehydes (Bouchez+, 2012) J/A+A/543/A46 : Submillimeter spectrum of HCOOCD2H (Coudert+, 2012) J/A+A/543/A135 : New analysis of 13C-CH3CH2CN up to 1THz (Richard+, 2012) J/A+A/544/A82 : Rotational spectroscopy of diisocyanomethane (Motiyenko+, 2012 J/A+A/548/A71 : Spectroscopy and ISM detection of formamide (Motiyenko+, 2012) J/A+A/549/A96 : The mm & sub-mm spectra of 13C-glycolaldehydes (Haykal+, 2013) J/A+A/549/A128 : Singly deuterated isotopologues of formamide (Kutsenko+, 2013) J/A+A/552/A117 : Mono-deuterated dimethyl ether (Richard+, 2013) J/A+A/553/A84 : (Sub)mm spectrum of deuterated methyl cyanides (Nguyen+, 2013) J/A+A/559/A44 : Rotational spectrum of MAAN (CH2NCH2CH) (Motiyenko+, 2013) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- J1 [1/44] Upper J quantum number 4- 6 I3 --- Ka1 [0/19] Upper Ka quantum number 8- 11 A4 --- G1 Upper symmetry species Γ (G1) 12- 14 I3 --- J0 [0/44] Lower J quantum number 15- 17 I3 --- Ka0 [0/18] Lower Ka quantum number 19- 22 A4 --- G0 Lower symmetry species Γ (G1) 25- 37 F13.4 MHz Freq [5/2661539] Observed transition frequency 39- 46 F8.4 MHz Error [-0.001/0.5] Uncertainty of measurements 48- 55 F8.4 MHz O-C [-1/1] Residuals of the fit 58- 59 I2 --- Ref [1/11] Reference (1) -------------------------------------------------------------------------------- Note (1): References as follows: 1 = this study 2 = Shimoda, Nishikawa & Itoh, 1954, J. Phys. Soc. Jpn., 9, 974 3 = Lide, 1954, J. Chem. Phys., 22, 1613 4 = Hirakawa, Miyahara & Shimoda, 1956, J. Phys. Soc. Jpn., 11, 334 5 = Nishikawa, T. 1957, J. Phys. Soc. Jpn., 12, 668 6 = Takagi, & Kojima, 1971, J. Phys. Soc. Jpn., 30, 1145 7 = Takagi, & Kojima, 1973, ApJ, 181, L91 8 = Ohashi & Hougen, 1987, J. Mol. Spec., 121, 474 9 = Kreglewski, Stahl, Grabow, & Wlodarczak, 1992 Chem. Phys. Lett., 196, 155 10 = Kreglewski & Wlodarczak, 1992, J. Mol. Spectrosc., 156, 383 11 = Ilyushin, Alekseev, Dyubko, Motiyenko, Hougen, 2005, J. Mol. Spec., 229, 170 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 I3 --- J1 [1/50] Upper J quantum number 4- 6 I3 --- Ka1 [0/20] Upper Ka quantum number 8- 11 A4 --- G1 Upper symmetry species Γ (G1) 12- 14 I3 --- F1 [0/51] Upper F quantum number 16- 18 I3 --- J0 [0/50] Lower J quantum number 19- 21 I3 --- Ka0 [0/20] Lower Ka quantum number 23- 26 A4 --- G0 Lower symmetry Γ0 specie (G1) 27- 29 I3 --- F0 [0/51] Lower F quantum number 31- 43 F13.4 MHz Freq [1019/2999600] Calculated transition frequency 45- 51 F7.4 MHz Error [0.0005/0.9995] Calculated uncertainty 54- 60 F7.3 D2 mu2S [0/49] Calculated line strength 62- 63 I2 --- Wst [1/3] Statistical weight 65- 73 F9.3 cm-1 E0 [0/2508] Energy of the lower state -------------------------------------------------------------------------------- Global Notes: Note (G1): symmetries are A1, A2, B1, B2, E1+1, E1-1, E2+1, E2-1 Acknowledgements: Roman Motiyenko, roman.motienko(at)univ-lille1.fr
(End) Roman Motiyenko [PhLAM, Lille 1], Patricia Vannier [CDS] 28-Jan-2014
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line