J/A+A/581/A67    Solar supergranular velocity profiles      (Langfellner+, 2015)

Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking. Langfellner J., Gizon L., Birch A.C. <Astron. Astrophys. 581, A67 (2015)> =2015A&A...581A..67L 2015A&A...581A..67L
ADC_Keywords: Sun Keywords: convection - Sun: helioseismology - Sun: oscillations - Sun: granulation Abstract: Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Description: These tables give the azimuthally averaged horizontal velocity components vr and vt for the average supergranular outflows and inflows at various latitudes, as displayed for 40° latitude in Fig. 13 in the paper. The velocities have been computed by the method of local correlation tracking using intensity images from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) spacecraft. The structures of all data files are identical. The error estimates were computed by splitting the whole observation period (112 days) in eight parts. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file p60_out.dat 49 136 +60° latitude, outflow p60_in.dat 49 136 +60° latitude, inflow p40_out.dat 49 136 +40° latitude, outflow p40_in.dat 49 136 +40° latitude, inflow p20_out.dat 49 136 +20° latitude, outflow p20_in.dat 49 136 +20° latitude, inflow 0_out.dat 49 136 0° latitude, outflow 0_in.dat 49 136 0° latitude, inflow m20_out.dat 49 136 -20° latitude, outflow m20_in.dat 49 136 -20° latitude, inflow m40_out.dat 49 136 -40° latitude, outflow m40_in.dat 49 136 -40° latitude, inflow m60_out.dat 49 136 -60° latitude, outflow m60_in.dat 49 136 -60° latitude, inflow -------------------------------------------------------------------------------- Byte-by-byte Description of file: *.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 F9.4 Mm r [0.34/48] horizontal distance from outflow/inflow center 11- 19 F9.4 m/s vr [-240/350] Radial velocity component 21- 29 F9.4 m/s e_vr [0.1/6.1] Error estimate of vr 31- 39 F9.4 m/s vt [-12/12] Tangential velocity component 41- 49 F9.4 m/s e_vt [0.04/0.8] Error estimate of vt -------------------------------------------------------------------------------- Acknowledgements: Jan Langfellner, jlangfe(at)astro.physik.uni-goettingen.de
(End) Jan Langfellner [Univ. Goettingen], Patricia Vannier [CDS] 15-Jul-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line