J/A+A/584/A53       Code for trispectrum of halo model       (Kuntz, 2015)

Cross-correlation of CFHTLenS catalogue and Planck CMB lensing using the halo model description. Kuntz A. <Astron. Astrophys. 584, A53 (2015)> =2015A&A...584A..53K 2015A&A...584A..53K (SIMBAD/NED BibCode)
ADC_Keywords: Models ; Gravitational lensing Keywords: large-scale structure of the Universe - cosmology: observations - cosmology: theory - gravitational lensing: weak Abstract: I cross-correlate the galaxy counts from the Canada-France Hawaii Telescope Lensing Survey (CFHTLenS) galaxy catalogue and cosmic microwave background (CMB) convergence from the Planck data releases 1 (2013) and 2 (2015). I improve on an earlier study by computing an analytic covariance from the halo model, implementing simulations to validate the theoretically estimated error bars and the reconstruction method, fitting both a galaxy bias and a cross-correlation amplitude using the joint cross and galaxy auto-correlation, and performing a series of null tests. Using a Bayesian analysis, I find a galaxy bias b=0.92±0.02 and cross-correlation amplitude A=0.850.15-0.16 for the 2015 release, whereas for the 2013 release, I find b=0.93±0.02 and A=10.5±0.15. I thus confirm the difference between the two releases found earlier, although both values of the amplitude now appear to be compatible with the fiducial value A=1. Description: This code computes the trispectrum of the halo model following equation (A.5) of the paper. Here are the instructions to run it. - You will need a file named "powerspectrum.dat" containing the linear power spectrum, given by e.g camb by Anthony Lewis - You will need cython (I wrote this program in cython to ensure a quick computation of the trispectrum) - First run "Mzm.py" to compute the M matrix given in Equation (43) of the paper - Then run "kernelsc.pyx" to store the values of the lensing kernels (equations (3) and (5)). You can then comment lines 64 to 77. - Finally you can run "trispectrumhalocz_m.pyx" where I define the function "trispectrum", to be used at your convenience. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file code.tar 1044 1470 All code files -------------------------------------------------------------------------------- Description of file: The code.tar file contains: kernels.py : Kernels functions (Python) kernelsc.pxd : Kernels functions (pxd) kernelsc.pyx : Kernels functions (Cython) Mzm.py : M matrix Params.py : Physical and numeric parameters Trispectrumhalocz_m.pxd : Halo trispectrum (pxd) Trispectrumhalocz_m.pyx : Halo trispectrum (Cython) Trispectrum_PT.py : PT trispectrum (Python) Trispectrum_PTc.pxd : PT trispectrum (pxd) Trispectrum_PTc.pyx : PT trispectrum (Cython) -------------------------------------------------------------------------------- Acknowledgements: Adrien Kuntz, adrien.kuntz(at)ens.fr
(End) Adrien Kuntz [ENS, France], Patricia Vannier [CDS] 10-Nov-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line