J/A+A/586/A49 r- and s- process elements in Milky Way disk (Battistini+, 2016)
The origin and evolution of r- and s- process elements in the Milky Way
stellar disk.
Battistini C., Bensby T.
<Astron. Astrophys. 586, A49 (2016)>
=2016A&A...586A..49B 2016A&A...586A..49B (SIMBAD/NED BibCode)
ADC_Keywords: Stars, dwarfs ; Stars, nearby ; Abundances ; Spectroscopy
Keywords: stars: abundances - stars: solar-type - Galaxy: disk -
Galaxy: evolution - Galaxy: solar neighborhood
Abstract:
Elements heavier than iron are produced through neutron-capture
processes in the different phases of stellar evolution. Asymptotic
giant branch (AGB) stars are believed to be mainly responsible for
elements that form through the slow neutron-capture process, while the
elements created in the rapid neutron-capture process have production
sites that are less understood. Knowledge of abundance ratios as
functions of metallicity can lead to insight into the origin and
evolution of our Galaxy and its stellar populations.
We aim to trace the chemical evolution of the neutron-capture elements
Sr, Zr, La, Ce, Nd, Sm, and Eu in the Milky Way stellar disk. This
will allow us to constrain the formation sites of these elements, as
well as to probe the evolution of the Galactic thin and thick disks.
Using spectra of high resolution (42000≤R≤65000) and high
signal-to-noise (S/N≥200) obtained with the MIKE and the FEROS
spectrographs, we determine Sr, Zr, La, Ce, Nd, Sm, and Eu abundances
for a sample of 593 F and G dwarf stars in the solar neighborhood. The
abundance analysis is based on spectral synthesis using
one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE)
model stellar atmospheres calculated with the MARCS 2012 code.
Description:
We present the elemental abundances of a large sample of F and G
dwarfs in the solar neighborhood. The analysis is based on
high-resolution spectra obtained with MIKE on the Magellan telescope
and FEROS on the ESO 1.5m and 2.2m telescopes. We focused our study on
r- and s- process elements, precisely Sr, Zr, La, Ce, Nd, Sm, and Eu.
In the following tables we provide stellar parameters for the sample,
abundances for the single lines analysed and detailed abundances for
Sr, Zr, La, Ce, Nd, Sm, and Eu.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 122 593 Abundance from single lines
table4.dat 68 593 Stellar parameter, [X/H] abundances
--------------------------------------------------------------------------------
See also:
J/A+A/562/A71 : Solar neighbourhood dwarfs chemical abundances (Bensby+, 2014)
J/A+A/577/A9 : Sc, V, Mn, and Co in Milky Way stars (Battistini+, 2015)
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HIP Hipparcos number
8- 11 F4.2 [-] AbSr1 ? Absolute Sr abundance for Sr 4607Å
13- 16 F4.2 [-] AbZr1 ? Absolute Zr abundance for Zr 4208Å
18- 21 F4.2 [-] AbZr2 ? Absolute Zr abundance for Zr 4687Å
23- 26 F4.2 [-] AbZr3 ? Absolute Zr abundance for Zr 4739Å
28- 31 F4.2 [-] AbZr4 ? Absolute Zr abundance for Zr 5112Å
33- 36 F4.2 [-] AbLa1 ? Absolute La abundance for La 4662Å
38- 41 F4.2 [-] AbLa2 ? Absolute La abundance for La 4748Å
43- 46 F4.2 [-] AbLa3 ? Absolute La abundance for La 5122Å
48- 51 F4.2 [-] AbLa4 ? Absolute La abundance for La 6390Å
53- 56 F4.2 [-] AbCe1 ? Absolute Ce abundance for Ce 4523Å
58- 61 F4.2 [-] AbCe2 ? Absolute Ce abundance for Ce 4572Å
63- 66 F4.2 [-] AbCe3 ? Absolute Ce abundance for Ce 4628Å
68- 71 F4.2 [-] AbCe4 ? Absolute Ce abundance for Ce 5187Å
73- 76 F4.2 [-] AbNd1 ? Absolute Nd abundance for Nd 4177Å
78- 81 F4.2 [-] AbNd2 ? Absolute Nd abundance for Nd 4358Å
83- 86 F4.2 [-] AbNd3 ? Absolute Nd abundance for Nd 4446Å
88- 91 F4.2 [-] AbNd4 ? Absolute Nd abundance for Nd 5130Å
93- 96 F4.2 [-] AbNd5 ? Absolute Nd abundance for Nd 5319Å
98-101 F4.2 [-] AbSm1 ? Absolute Sm abundance for Sm 4467Å
103-106 F4.2 [-] AbSm2 ? Absolute Sm abundance for Sm 4523Å
108-111 F4.2 [-] AbSm3 ? Absolute Sm abundance for Sm 4577Å
113-116 F4.2 [-] AbSm4 ? Absolute Sm abundance for Sm 4669Å
118-122 F5.2 [-] AbEu1 ? Absolute Eu abundance for Eu 4129Å
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HIP Hipparcos number
8- 11 I4 K Teff Effective temperature
13- 15 F3.1 [cm/s2] logg Surface gravity
17- 21 F5.2 [Sun] [Fe/H] Abundance ratio Fe/H normalised to Sun
23- 26 F4.2 km/s xi Microturbulence velocity
28- 32 F5.2 [Sun] [Sr/H] ? Abundance ratio Sr/H normalised to Sun
34- 38 F5.2 [Sun] [Zr/H] ? Abundance ratio Zr/H normalised to Sun
40- 44 F5.2 [Sun] [La/H] ? Abundance ratio La/H normalised to Sun
46- 50 F5.2 [Sun] [Ce/H] ? Abundance ratio Ce/H normalised to Sun
52- 56 F5.2 [Sun] [Nd/H] ? Abundance ratio Nd/H normalised to Sun
58- 62 F5.2 [Sun] [Sm/H] ? Abundance ratio Sm/H normalised to Sun
64- 68 F5.2 [Sun] [Eu/H] ? Abundance ratio Eu/H normalised to Sun
--------------------------------------------------------------------------------
Acknowledgements:
Chiara Battistini, cbattistini(at)lsw.uni-heidelberg.de
Zentrum fur Astronomie der Universitat Heidelberg, Landessternwarte
(End) Chiara Battistini [Heidelberg], Patricia Vannier [CDS] 26-Nov-2015