J/A+A/589/A98      Swift GRBs individual power density spectra (Guidorzi+, 2016)

Individual power density spectra of Swift gamma-ray bursts. Guidorzi C., Dichiara S., Amati L. <Astron. Astrophys. 589, A98 (2016)> =2016A&A...589A..98G 2016A&A...589A..98G (SIMBAD/NED BibCode)
ADC_Keywords: Gamma rays ; Spectroscopy Keywords: gamma-ray burst: general - methods: statistical Abstract: Timing analysis can be a powerful tool for shading light on the still obscure emission physics and geometry of the prompt emission of gamma-ray bursts (GRBs). Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and, more in general, to investigate the dominant variability timescales in astrophysical sources. Because of the limited duration and of the statistical properties involved, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature thus far. We aim at characterising the individual PDS of GRBs to describe their variability in terms of a stochastic process, to explore their variety, and to carry out for the first time a systematic search for periodic signals and for a link between PDS properties and other GRB observables. We present a Bayesian procedure which uses a Markov chain Monte Carlo technique and apply it to study the individual power density spectra of 215 bright long GRBs detected with the Swift Burst Alert Telescope in the 15-150keV band from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Two classes of GRBs emerge: with or without a unique dominant time scale. A comparison with active galactic nuclei (AGNs) reveals similar distributions of PDS slopes. Unexpectedly, GRBs with subsecond dominant timescales and duration longer than a few ten seconds in the source frame appear to be either very rare or altogether absent. Three GRBs are found with possible evidence for periodic signal at 3.0-3.2σ (Gaussian) significance, corresponding to a multi-trial chance probability of ∼1%. Thus, we found no compelling evidence for periodic signal in GRBs. The analogy between the PDS of GRBs and of AGNs could tentatively hint at similar stochastic processes that rule BH accretion across different BH mass scales and objects. In addition, we find evidence that short dominant timescales and duration are not completely independent of each other, in contrast with commonly accepted paradigms. Description: Time intervals, redshifts, best-fit parameters of the power density spectra (PDS) for 215 bright long GRBs observed with the Swift Burst Alert Telescope (BAT) from January 2005 to May 2015. Parameters refer to two alternative PDS models: either a power-law (PL) or a bent power-law (BPL) plus a constant background. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 70 215 Time intervals for calculating the PDS referred to trigger times, T90, redshifts refs.dat 47 59 References table2.dat 126 215 Best fit model and parameters (1 sigma) for total energy passband (15-150keV) table3.dat 118 215 Best fit model and parameters (1 sigma) for soft energy channel (15-50keV) table4.dat 118 215 Best fit model and parameters (1 sigma) for hard energy channel (50-150keV) -------------------------------------------------------------------------------- See also: J/ApJ/777/132 : A search for progenitors of short GRBs (Dichiara+, 2013) J/A+A/589/A97 : GRBs Ep and Fourier PDS slope correlation (Dichiara+, 2016) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- GRB GRB name 11- 18 F8.3 s Tstart Start since the trigger time 22- 29 F8.3 s Tstop Stop since the trigger time 33- 40 F8.3 s T7sigma Duration of T(7sigma) interval 44- 51 F8.3 s T90 Duration of T90 interval 55- 57 A3 --- Cat Catalogue name used for T90 (1) 60- 65 F6.4 --- z ?=- GRB Redshift (NA when not available) 69- 70 I2 --- r_z ?=- Reference for redshift, in refs.dat file -------------------------------------------------------------------------------- Note (1): Code for Catalogue name used for T90 as follows: S11 = from Sakamoto et al., 2011, Cat. J/ApJS/195/2 GCN = from Swift-BAT refined GCN circulars. -------------------------------------------------------------------------------- Byte-by-byte Description of file: refs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Ref Reference code 4- 22 A19 --- BibCode BibCode 24- 47 A24 --- Aut Author's name -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- GRB GRB name 10- 12 A3 --- Model Best-fit model of the PDS 16- 21 F6.3 [-] logN Best-fit log10(normalisation) of the PDS 26- 30 F5.3 [-] e_logN Error (1 sigma) on logN 35- 40 F6.3 [Hz] logfb ?=- Best-fit log10(break frequency/Hz) (--- when not available) 45- 49 F5.3 [Hz] e_logfb ? Error (1 sigma) on logfb 54- 58 F5.3 --- alpha Best-fit PDS slope (model parameter alpha) 63- 67 F5.3 --- e_alpha Error (1 sigma) on alpha 75- 79 F5.3 --- B Best-fit white noise level (model param B) 84- 88 F5.3 --- e_B Error (1 sigma) on B 94- 98 F5.3 --- pTR P-value of TR statistic 104-108 F5.3 --- pAD P-value of Anderson-Darling statistic 114-118 F5.3 --- pKS P-value of Kolmogorov-Smirnov statistic 125-126 I2 --- Np Number of pulses as determined with MEPSA -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- GRB GRB name 10- 12 A3 --- Model Best-fit model of the PDS 16- 21 F6.3 [-] logN Best-fit log10(normalisation) of the PDS 26- 30 F5.3 [-] e_logN Error (1 sigma) on logN 35- 40 F6.3 [Hz] logfb ?=- Best-fit log10(break frequency/Hz) (--- when not available) 45- 49 F5.3 [Hz] e_logfb ? Error (1 sigma) on logfb 54- 58 F5.3 --- alpha Best-fit PDS slope (model parameter alpha) 63- 67 F5.3 --- e_alpha Error (1 sigma) on alpha 75- 79 F5.3 --- B Best-fit white noise level (model param B) 84- 88 F5.3 --- e_B Error (1 sigma) on B 94- 98 F5.3 --- pTR P-value of TR statistic 104-108 F5.3 --- pAD P-value of Anderson-Darling statistic 114-118 F5.3 --- pKS P-value of Kolmogorov-Smirnov statistic -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- GRB GRB name 10- 12 A3 --- Model Best-fit model of the PDS 16- 21 F6.3 [-] logN Best-fit log10(normalisation) of the PDS 26- 30 F5.3 [-] e_logN Error (1 sigma) on logN 35- 40 F6.3 [Hz] logfb ?=- Best-fit log10(break frequency/Hz) (--- when not available) 45- 49 F5.3 [Hz] e_logfb ? Error (1 sigma) on logfb 54- 58 F5.3 --- alpha Best-fit PDS slope (model parameter alpha) 63- 67 F5.3 --- e_alpha Error (1 sigma) on Alpha 75- 79 F5.3 --- B Best-fit white noise level (model param B) 84- 88 F5.3 --- e_B Error (1 sigma) on B 94- 98 F5.3 --- pTR P-value of TR statistic 104-108 F5.3 --- pAD P-value of Anderson-Darling statistic 114-118 F5.3 --- pKS P-value of Kolmogorov-Smirnov statistic -------------------------------------------------------------------------------- Acknowledgements: Cristiano Guidorzi, guidorzi(at)fe.infn.it
(End) C. Guidorzi [Ferrara Univ., Italy], P. Vannier [CDS] 21-Mar-2016
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line