J/A+A/590/A29 Multi-frequency galaxy group catalogue (Poudel+, 2016)
Multi-frequency studies of galaxies and groups:
I. Environmental effect on galaxy stellar mass and morphology.
Poudel A., Heinamaki P., Nurmi P., Teerikorpi P., Tempel E., Lietzen H.,
Einasto M.
<Astron. Astrophys. 590, A29 (2016)>
=2016A&A...590A..29P 2016A&A...590A..29P (SIMBAD/NED BibCode)
ADC_Keywords: Clusters, galaxy ; Galaxy catalogs ; Photometry
Keywords: galaxies: groups: general -
galaxies: luminosity function, mass function - infrared: galaxies -
galaxies: structure - galaxies: evolution
Abstract:
To understand the role of the environment in galaxy formation,
evolution, and present-day properties, it is essential to study the
multi-frequency behavior of different galaxy populations under various
environmental conditions. We study the stellar mass functions of
different galaxy populations in groups as a function of their large
scale environments using multi-frequency observations. We crossmatch
the SDSS DR10 group catalogue with GAMA Data Release 2 and Wide-field
Survey Explorer (WISE) data to construct a catalogue of 1651 groups
and 11436 galaxies containing photometric information in 15 different
wavebands ranging from ultraviolet (0.152-micron) to mid-infrared
(22-micron). We perform the spectral energy distribution (SED) fitting
of galaxies using the MAGPHYS code and estimate the rest frame
luminosities and stellar masses. We use the 1/Vmax method to estimate
the galaxy stellar mass and luminosity functions, and the luminosity
density field of galaxies to define the large scale environment of
galaxies. The stellar mass functions of both central and satellite
galaxies in groups are different in low and high density large scale
environments. Satellite galaxies in high density environments have a
steeper low mass end slope compared to low density environments,
independently of the galaxy morphology. Central galaxies in low
density environments have a steeper low mass end slope but the
difference disappears for fixed galaxy morphology. The characteristic
stellar mass of satellite galaxies is higher in high density
environments and the difference exists only for galaxies with
elliptical morphologies. Galaxy formation in groups is more efficient
in high density large scale environments. Groups in high density
environments have higher abundances of satellite galaxies,
irrespective of the satellite galaxy morphology. The elliptical
satellite galaxies are generally more massive in high density
environments. The stellar masses of spiral satellite galaxies show no
dependence on the large scale environment.
Description:
We present the multi-frequency group catalogue in the wavelength range
ultraviolet (0.152-micron) to mid-infrared (22-micron).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
fitgal.dat 752 11436 Catalog of galaxies
--------------------------------------------------------------------------------
See also:
J/A+A/566/A1 : SDSS galaxies flux- and volume-limited groups (Tempel+, 2014)
Byte-by-byte Description of file: fitgal.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- GalID Unique galaxy ID (1)
9- 27 I19 --- specID ?=0 SDSS DR10 spectroscopic objectID (1)
30- 48 I19 --- objID SDSS DR10 photometric objectID (1)
51- 55 I5 --- GroupID ?=0 Group/cluster id (1)
59- 60 I2 --- Ngal Group richness (1)
64- 65 I2 --- Rank Stellar mass rank within its group
69- 81 F13.9 deg RAdeg Right ascension (J2000) (1)
84- 95 F12.9 deg DEdeg Declination (J2000) (1)
99-109 F11.9 --- zcmb Redshift (CMB rest frame) (1)
112 I1 --- Morph [0/2] Galaxy morphology (2)
117-127 F11.8 --- Den8 Environmental density at scale=8Mpc/h (1)
132-140 F9.6 mag FUVf Rest frame FUV magnitude from SED fitting
145-153 F9.6 mag NUVf Rest frame NUV magnitude from SED fitting
158-166 F9.6 mag umagf Rest frame u magnitude from SED fitting
171-179 F9.6 mag gmagf Rest frame g magnitude from SED fitting
184-192 F9.6 mag rmagf Rest frame r magnitude from SED fitting
197-205 F9.6 mag imagf Rest frame i magnitude from SED fitting
210-218 F9.6 mag zmagf Rest frame z magnitude from SED fitting
223-231 F9.6 mag Ymagf Rest frame Y magnitude from SED fitting
236-244 F9.6 mag Jmagf Rest frame J magnitude from SED fitting
249-257 F9.6 mag Hmagf Rest frame H magnitude from SED fitting
262-270 F9.6 mag Kmagf Rest frame K magnitude from SED fitting
275-283 F9.6 mag W1magf Rest frame W1 magnitude from SED fitting
288-296 F9.6 mag W2magf Rest frame W2 magnitude from SED fitting
301-309 F9.6 mag W3magf Rest frame W3 magnitude from SED fitting
314-322 F9.6 mag W4magf Rest frame W4 magnitude from SED fitting
326-335 F10.6 mag FUV ?=-99 Observed FUV magnitude before SED
fitting (3)
339-348 F10.6 mag NUV ?=-99 Observed NUV magnitude before SED
fitting (3)
352-361 F10.6 mag umag ?=-99 Observed u magnitude before SED
fitting (4)
365-374 F10.6 mag gmag ?=-99 Observed g magnitude before SED
fitting (4)
378-387 F10.6 mag rmag ?=-99 Observed r magnitude before SED
fitting (4)
391-400 F10.6 mag imag ?=-99 Observed i magnitude before SED
fitting (4)
404-413 F10.6 mag zmag ?=-99 Observed z magnitude before SED
fitting (4)
417-426 F10.6 mag Ymag ?=-99 Observed Y magnitude before SED
fitting (4)
430-439 F10.6 mag Jmag ?=-99 Observed J magnitude before SED
fitting (4)
443-452 F10.6 mag Hmag ?=-99 Observed H magnitude before SED
fitting (4)
456-465 F10.6 mag Kmag ?=-99 Observed K magnitude before SED
fitting (4)
469-478 F10.6 mag W1mag ?=-99 Observed W1 magnitude before SED
fitting (5)
482-491 F10.6 mag W2mag ?=-99 Observed W2 magnitude before SED
fitting (5)
495-504 F10.6 mag W3mag ?=-99 Observed W3 magnitude before SED
fitting (5)
508-517 F10.6 mag W4mag ?=-99 Observed W4 magnitude before SED
fitting (5)
520-525 F6.3 Msun M*2.5 Stellar mass (2.5th percentile)
528-533 F6.3 Msun M*16 Stellar mass (16th percentile)
536-541 F6.3 Msun M*50 Stellar mass (50th percentile)
544-549 F6.3 Msun M*84 Stellar mass (84th percentile)
552-557 F6.3 Msun M*97.5 Stellar mass (97.5th percentile)
561-570 F10.6 mag FUVMAG Absolute FUV magnitude from SED fitting
574-583 F10.6 mag NUVMAG Absolute NUV magnitude from SED fitting
587-596 F10.6 mag uMAG Absolute u magnitude from SED fitting
600-609 F10.6 mag gMAG Absolute g magnitude from SED fitting
613-622 F10.6 mag rMAG Absolute r magnitude from SED fitting
626-635 F10.6 mag iMAG Absolute i magnitude from SED fitting
639-648 F10.6 mag zMAG Absolute z magnitude from SED fitting
652-661 F10.6 mag YMAG Absolute Y magnitude from SED fitting
665-674 F10.6 mag JMAG Absolute J magnitude from SED fitting
678-687 F10.6 mag HMAG Absolute H magnitude from SED fitting
691-700 F10.6 mag KMAG Absolute K magnitude from SED fitting
704-713 F10.6 mag W1MAG Absolute W1 magnitude from SED fitting
717-726 F10.6 mag W2MAG Absolute W2 magnitude from SED fitting
730-739 F10.6 mag W3MAG Absolute W3 magnitude from SED fitting
743-752 F10.6 mag W4MAG Absolute W4 magnitude from SED fitting
--------------------------------------------------------------------------------
Note (1): Data are taken from Tempel et al., 2014A&A...566A...1T 2014A&A...566A...1T,
Cat. J/A+A/566/A1.
Note (2): Galaxy morphology as follows:
(spiral=1,elliptical=2, unclassified=0) (1)
Note (3): Data are taken from GAMA GalexCoGPhot catalogue available at
http://www.gama-survey.org/dr2/schema/
Note (4): Data are taken from SersicCatAll catalogue available at
http://www.gama-survey.org/dr2/schema/
Note (5): Data are taken from AllWISE Source Catalog available at
http://irsa.ipac.caltech.edu/Missions/wise.html
-------------------------------------------------------------------------------
Acknowledgements:
Anup Poudel, anuppou(at)utu.fi
(End) Anup Poudel [Tuorla Obs., Finland], Patricia Vannier [CDS] 07-Mar-2016