J/A+A/592/A111 Evolution of long-lived globular cluster stars (Chantereau+ 2016)

Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russel diagram. Chantereau W., Charbonnel C., Meynet G. <Astron. Astrophys. 592, A111 (2016)> =2016A&A...592A.111C 2016A&A...592A.111C (SIMBAD/NED BibCode)
ADC_Keywords: Models ; Clusters, globular Keywords: stars: abundances - stars: evolution - stars: low-mass - globular clusters: general - stars: chemically peculiar Abstract: Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H]=-1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Description: We present a grid of 224 stellar evolution models for low-mass stars with initial masses between 0.3 and 1.0M and initial helium mass fraction between 0.248 and 0.8 computed for [Fe/H]=-1.75 with the stellar evolution code STAREVOL. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file list.dat 18 15 List of files models/* . 15 Individual files -------------------------------------------------------------------------------- Byte-by-byte Description of file: list.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 F4.2 Msun Mini Initial mass of the model 7- 18 A12 --- FileName Name of the file in subdirectory models (1) -------------------------------------------------------------------------------- Note (1): In each files, there are 22 models with different initial helium from 0.248 (in mass fraction) to 0.8 -> [0.248,0.26,0.27,0.3,0.33,0.37,0.4,0.425, 0.45,0.475,0.5,0.525,0.55,0.575,0.6,0.625,0.65,0.675,0.7,0.73,0.77,0.8] Before each set of data, there is a header displaying the number of lines for each model (up to 500), the initial mass and the initial helium mass fraction (e.g. 500 0.80 0.248) The number of the line represents the following points (if possible): Number 101 -> Zero age main sequence Number 211 -> Turn-off Number 271 -> Base of the RGB Number 291 -> RGB tip Number 451 -> Base of the AGB Number 500 -> Maximum of luminosity of the AGB Content of the files: Byte-by-byte Description of file: models/*.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 24 E24.19 --- Model Model number 26- 49 E24.19 K Tmax Maximum temperature 51- 74 E24.19 Msun Mass Mass coordinate of Tmax 76- 99 E24.19 K Teff Effective temperature 101- 124 E24.19 Lsun L Surface luminosity 126- 149 E24.19 Rsun Reff Photospheric radius 151- 174 E24.19 g/cm3 rhoeff Photospheric density 176- 199 E24.19 g/cm3 rhomax Density at the location of Tmax 201- 224 E24.19 Msun M Stellar mass 226- 249 E24.19 Msun/yr DM/dt Mass-loss rate 251- 274 E24.19 yt t Age 276- 299 E24.19 [cm/s2] log(geff) Photospheric gravity 301- 324 E24.19 K Tc Central temperature 326- 349 E24.19 --- Pc Central pressure 351- 374 E24.19 Msun Menv Mass at the base of the convective envelope 376- 399 E24.19 Msun Mcode Mass of the core 401- 424 E24.19 --- H1 H1 surface abundance 426- 449 E24.19 --- H2 H2 surface abundance 451- 474 E24.19 --- He3 He3 surface abundance 476- 499 E24.19 --- He4 He4 surface abundance 501- 524 E24.19 --- Li6 Li6 surface abundance 526- 549 E24.19 --- Li7 Li7 surface abundance 551- 574 E24.19 --- Be7 Be7 surface abundance 576- 599 E24.19 --- Be9 Be9 surface abundance 601- 624 E24.19 --- B10 B10 surface abundance 626- 649 E24.19 --- B11 B11 surface abundance 651- 674 E24.19 --- C12 C12 surface abundance 676- 699 E24.19 --- C13 C13 surface abundance 701- 724 E24.19 --- C14 C14 surface abundance 726- 749 E24.19 --- N14 N14 surface abundance 751- 774 E24.19 --- N15 N15 surface abundance 776- 799 E24.19 --- O16 O16 surface abundance 801- 824 E24.19 --- O17 O17 surface abundance 826- 849 E24.19 --- O18 O18 surface abundance 851- 874 E24.19 --- F19 F19 surface abundance 876- 899 E24.19 --- Ne20 Ne20 surface abundance 901- 924 E24.19 --- Ne21 Ne21 surface abundance 926- 949 E24.19 --- Ne22 Ne22 surface abundance 951- 974 E24.19 --- Na23 Na23 surface abundance 976- 999 E24.19 --- Mg24 Mg24 surface abundance 1001-1024 E24.19 --- Mg25 Mg25 surface abundance 1026-1049 E24.19 --- Mg26 Mg26 surface abundance 1051-1074 E24.19 --- Al26m Al26m surface abundance 1076-1099 E24.19 --- Al26g Al26g surface abundance 1101-1124 E24.19 --- Al27 Al27 surface abundance 1126-1149 E24.19 --- Si28 Si28 surface abundance 1151-1174 E24.19 --- H1c H1 central abundance 1176-1199 E24.19 --- He3c He3 central abundance 1201-1224 E24.19 --- He4c He4 central abundance 1226-1249 E24.19 --- C12c C12 central abundance 1251-1274 E24.19 --- C13c C13 central abundance 1276-1299 E24.19 --- C14c C14 central abundance 1301-1324 E24.19 --- N14c N14 central abundance 1326-1349 E24.19 --- O16c O16 central abundance 1351-1374 E24.19 --- O17c O17 central abundance 1376-1399 E24.19 --- O18c O18 central abundance 1401-1424 E24.19 --- F19c F19 central abundance 1426-1449 E24.19 --- Ne20c Ne20 central abundance 1451-1474 E24.19 --- Ne21c Ne21 central abundance 1476-1499 E24.19 --- Ne22c Ne22 central abundance 1501-1524 E24.19 --- Na23c Na23 central abundance 1526-1549 E24.19 --- Mg24c Mg24 central abundance 1551-1574 E24.19 --- Mg25c Mg25 central abundance 1576-1599 E24.19 --- Mg26c Mg26 central abundance 1601-1624 E24.19 --- Al26mc Al26m central abundance 1626-1649 E24.19 --- Al26gc Al26g central abundance 1651-1674 E24.19 --- Al27c Al27 central abundance 1676-1699 E24.19 --- Si28c Si28 central abundance -------------------------------------------------------------------------------- History: Copied at http://obswww.unige.ch/Recherche/evol/starevol/Globular.php References: Chantereau et al., Paper I 2015A&A...578A.117C 2015A&A...578A.117C Charbonnel & Chantereau, Paper II 2016A&A...586A..21C 2016A&A...586A..21C
(End) Patricia Vannier [CDS] 04-Aug-2016
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line