J/A+A/602/A86 Blazar candidates among Fermi/LAT 3FGL catalog (Lefaucheur+, 2017)

Research and characterisation of blazar candidates among the Fermi/LAT 3FGL catalogue using multivariate classifications. Lefaucheur J., Pita S. <Astron. Astrophys. 602, A86 (2017)> =2017A&A...602A..86L 2017A&A...602A..86L (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei; BL Lac objects ; Gamma rays Keywords: gamma rays; galaxies - galaxies: active - BL Lacertae objects: general - methods: statistical - catalogs Abstract: We present a study to search for, and characterise blazar candidates among the Fermi/LAT 3FGL catalogue using machine-learning classification methods. Classifiers are based on the exploitation of statistical differences imprinted in the 3FGL Fermi/LAT catalogue, such as variability and spectral shape, between different populations of sources. Description: We obtained a sample of 595 blazar candidates among the unassociated sources of the 3FGL catalogue. Performance metrics are derived separately for high (|b|>10-degrees) and low (|b|≤10-degrees) latitude sources, and according to the existence of a 3FGL caution flag. The number of candidates are sumarised below: - 345 high-latitude blazar candidates with no flag (estimated number of false positives ∼4.8) - 80 high-latitude blazar candidates with a flag (estimated number of false positives ∼4.5) - 72 low-latitude blazar candidates with no flag (estimated number of false positives ∼8.8) - 98 low-latitude blazar candidates with a flag (estimated number of false positives ∼54.0) We also propose an assignation, BL Lac or FSRQ, for the candidates we proposed and the blazar candidates from the 3FGL catalogue, labelled as BCUs. Only sources with no flag where considered. In total, we obtained a sample of 509 BL Lacs and 295 FSRQs with a number of false positives respectively estimated to ∼29 and ∼70. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table5.dat 255 595 Sample of blazar candidates from unassociated 3FGL sources table7.dat 216 903 Type assignation of blazar candidates -------------------------------------------------------------------------------- See also: J/ApJ/753/83 : Associations to 1FGL sources (Ackermann+, 2012) J/MNRAS/424/L64 : AGN/pulsar distinction for 2FGL sources (Mirabal+, 2012) J/ApJS/206/13 : Blazars with γ-ray counterparts. II. (Massaro+, 2013) J/ApJS/207/4 : Unidentified γ-ray sources. III. Radio (Massaro+, 2013) J/ApJ/782/41 : 231 AGN candidates from the 2FGL catalog (Doert+, 2014) J/ApJ/820/8 : 3FGL sources statistical classifications (Saz Parkinson+, 2016) Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- 3FGL 3FGL source name, JHHMM.m+DDMM (Source_Name) 14- 34 F21.17 deg GLON Galactic longitude 36- 57 F22.18 deg GLAT Galactic latitude 59- 61 I3 --- Flags Flags (1) 63- 82 F20.17 [-] logsigmac Discriminant parameter normalised curvature (NormalizedCurvature) (2) 84-102 F19.17 [-] logTS Discriminant parameter normalised variability (NormalizedVariability) (G2) 104-125 E22.18 --- HR23 Discriminant parameter HR23 hardness ratio (G3) 127-148 E22.19 --- HR34 Discriminant parameter HR34 hardness ratio (G3) 150-171 E22.19 --- HR23-HR34 Discriminant parameter curvature, HR23-HR34 (Curvature) 173-190 F18.16 --- lambda Discriminant parameter lambda (Lambda) (3) 192-210 F19.17 --- zetaBDT Output parameter zeta from BDT decision (zeta_BDT) (G5) 212-230 F19.17 --- zetaMLP Output parameter zeta from MLP decision (zeta_MLP) (G5) 232-235 A4 --- Type Blazar type (BlazarType) (G6) 237-239 A3 --- SP16 [yes/no ] In Saz Parkinson et al. (2016, Cat. J/ApJ/820/8) (SazParkinson2016) 241-243 A3 --- Mi12 [yes/no ] In Mirabal et al. (2012, Cat. J/MNRAS/424/L64) (Mirabal_2012) 245-247 A3 --- A12 [yes/no ] In Ackermann et al. (2012, Cat. J/ApJ/753/83) (Ackermann_2012) 249-251 A3 --- Ma13 [yes/no ] In Massaro et al. (2013, Cat. J/ApJS/207/4 and J/ApJS/206/13) (Massaro_2013) 253-255 A3 --- D14 [yes/no ] In Doert & Errando (2014, Cat. J/ApJ/782/41) (Doert_2014) -------------------------------------------------------------------------------- Note (1): Flags (from table3 of Acero et al. (2015ApJS..218...23A 2015ApJS..218...23A) as follows: 1 = Source with TS≥35, which went to TS≤25 when changing the diffuse model or the analysis method. Sources with TS≲35 are not flagged with this bit because normal statistical fluctuations can push them to TS<25 2 = Not used 3 = Flux (>1GeV) or energy flux (>100MeV) changed by more than 3σ when changing the diffuse model or the analysis method. Requires also that the flux change by more than 35% (to not flag strong sources) 4 = Source-to-background ratio less than 10% in highest band in which TS>25 Background is integrated over πr682 or 1 square degree, whichever is smaller 5 = Closer than θref from a brighter neighbor. θref is defined in the highest band in which source TS≥25, or the band with highest TS if all are <25. θref is set to 2.17° (FWHM) below 300MeV, 1.38° between 300MeV and 1GeV, 0.87° between 1 and 3GeV, 0.67° between 3 and 10GeV, and 0.45° above 10GeV (2r68) 6 = On top of an interstellar gas clump or small-scale defect in the model of diffuse emission 7 = Unstable position determination; result from GTFINDSRC outside the 95% ellipse from pointlike 8 = Not used 9 = Localization Quality >8 in pointlike or long axis of 95% ellipse >0.25° 10 = Spectral Fit Quality >16.3 11 = Possibly due to the Sun 12 = Highly curved spectrum; LogParabola β fixed to 1 or PLExpCutoff Spectral_Index fixed to 0.5 Note (2): Normalised curvature, defined as σc/σ where σc is the significance of the curvature and and σ is the detection significance (Doert & Errando, 2014, Cat. J/ApJ/782/41). Note (3): ratio between the spectral index of the preferred hypothesis and the spectral index of the power law hypothesis, called γ. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- 3FGL 3FGL source name, JHHMM.m+DDMM (Source_Name) 14- 33 F20.16 deg GLON Galactic longitude 35- 56 F22.18 deg GLAT Galactic latitude 58- 61 A4 --- Class [BCU UnId] Classification (CLASS) (1) 63- 80 F18.16 --- gamma Spectral index of the power law hypothesis (PowerLaw_Index) 82- 99 F18.16 [-] logEp Discriminant parameter pivot energy (which is somewhat correlated to the position of the high energy peak) (Pivot_Energy) 101-119 F19.17 [-] logTS Discriminant parameter normalised variability (NormalizedVariability) (G2) 121-142 E22.19 --- HR23 Discriminant parameter HR23 hardness ratio (G3) 144-165 E22.19 --- HR34 Discriminant parameter HR34 hardness ratio (G3) 167-188 F22.19 --- zetaBDT Output parameter zeta from BDT decision (zeta_BDT) (G5) 190-211 E22.19 --- zetaMLP Output parameter zeta from MLP decision (zeta_MLP) (G5) 213-216 A4 --- Type Blazar type (BlazarType) (G6) -------------------------------------------------------------------------------- Note (1): Classification as follows: BCU = blazar candidates of uncertain type UnId = unidentified -------------------------------------------------------------------------------- Global notes: Note (G2): Normalised variability, given by the ratio between the index variability TS and the detection significance σ (Doert & Errando 2014, Cat. J/ApJ/782/41). Note (G3): We use the definition of hardness ratio given in Ackermann et al. (2012, Cat. J/ApJ/753/83) which is HRij=(Fj<Ej>-Fi<Ei>)/(Fi<Ei>+Fj<Ej>), where Fi is the integrated flux in the energy band i and < Ei> is the mean energy of the band. Note (G5): optimal cutoff value with boosted decision trees (BDT) and a multilayer perceptron (MLP) neural network. Note (G6): Blazar type as follows: bll = BL Lac object fsrq = FSRQ (Flat Spectrum Radio Quasar) unc = uncertain NULL = not analyzed -------------------------------------------------------------------------------- Acknowledgements: Julien Lefaucheur, julien.lefaucheur(at)obspm.fr
(End) J. Lefaucheur [Obs. Paris/Meudon - LUTH], P. Vannier [CDS] 13-Mar-2017
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line