J/A+A/613/A41 5 exoplanet light and RV curves (Mancini+, 2018)
The GAPS Programme with HARPS-N at TNG.
XVI. Measurement of the Rossiter-McLaughlin effect of the transiting planetary
systems HAT-P-3, HAT-P-12, HAT-P-22, WASP-39 and WASP-60.
Mancini L., Esposito M., Covino E., Southworth J., Biazzo K., Bruni I.,
Ciceri S., Evans D., Lanza A. F., Poretti E., Sarkis P., Smith A.M.S.,
Brogi M., Affer L., Benatti S., Bignamini A., Boccato C., Bonomo A.S.,
Borsa F., Carleo I., Claudi R., Cosentino R., Damasso M., Desidera S.,
Giacobbe P., Gonzalez-Alvarez E., Gratton R., Harutyunyan A., Leto G.,
Maggio A., Malavolta L., Maldonado J., Martinez-Fiorenzano A., Masiero S.,
Micela G., Molinari E., Nascimbeni V., Pagano I., Pedani M., Piotto G.,
Rainer M., Scandariato G., Smareglia R., Sozzetti A., Andreuzzi G.,
Henning T.
<Astron. Astrophys. 613, A41 (2018)>
=2018A&A...613A..41M 2018A&A...613A..41M (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Planets ; Exoplanets ;
Radial velocities ; Photometry
Keywords: planetary systems - stars: late-type - stars: fundamental parameters -
techniques: radial velocities - techniques: photometric -
Abstract:
The measurement of the orbital obliquity of hot Jupiters, with
different physical characteristics, can provide clues to the
mechanisms of migration and orbital evolution of this particular class
of giant exoplanets.
We aim to derive the degree of alignment between planetary orbit and
stellar spin angular momentum vectors and look for possible links with
other orbital and fundamental physical parameters of the star-planet
system. Here we focus on the characterisation of five transiting
planetary systems (HAT-P-3, HAT-P-12, HAT-P-22, WASP-39 and WASP-60)
and the determination of their sky-projected planet orbital obliquity
through the measurement of the Rossiter-McLaughlin effect.
We used HARPS-N high-precision radial velocity measurements, gathered
during transit events, to measure the Rossiter-McLaughlin effect in
the target systems and determine the sky-projected angle between the
planetary orbital plane and the stellar equator. The characterisation
of stellar atmospheric parameters was performed exploiting the HARPS-N
spectra, using line equivalent width ratios, and spectral synthesis
methods. Photometric parameters of the five transiting exoplanets were
re-analysed through 17 new light curves, obtained with an array of
medium-class telescopes, and other light curves from the literature.
Survey-time-series photometric data were analysed for determining the
rotation periods of the five stars and their spin inclination.
From the analysis of the Rossiter-McLaughlin effect we derived a
sky-projected obliquity of λ=21.2±8.7°,
{lambda=-54+41-13°, {lambda=-2.1±3.0°,
lambda=0±11° and lambda=-129±17° for HAT-P-3 b,
HAT-P-12 b, HAT-P-22 b, WASP-39 b and WASP-60 b, respectively. The
latter value indicates that WASP-60 b is moving on a retrograde orbit.
These values represent the first measurements of λ for the five
exoplanetary systems under study. The stellar activity of HAT-P-22
indicates a rotation period of 28.7±0.4-days, which allowed us to
estimate the true misalignment angle of HAT-P-22 b,
ψ=24±18°. The revision of the physical parameters of the
five exoplanetary systems returned values fully compatible with those
existing in the literature, with the exception of the WASP-60 system,
for which, based on higher quality spectroscopic and photometric data,
we found a more massive and younger star, and a larger and hotter
planet.
Description:
Radial velocity measurements of HAT-P-3, HAT-P-12, HAT-P-22, WASP-39,
and WASP-60 obtained with HARPS-N at the 3.5m TNG telescope. Light
curves of transit events of the extrasolar planet HAT-P-3b, HAT-P-12b
and WASP-60b.
Two of the datasets were obtained using the Cassini 1.52m Telescope
(Gunn r and Gunn i) at the Astronomical Observatory of Bologna in
Loiano (Italy). Ten of the datasets were obtained using the Zeiss
1.23m telescope (Cousins R and Cousins I) at the German-Spanish
Astronomical Centre at Calar Alto (Spain). Four of the datasets were
obtained using the 2.2m telescope (Stromgren u, Gunn g, Gunn r,
Johnson I) at the German-Spanish Astronomical Centre at Calar Alto
(Spain). One of the datasets was obtained using the 2.5m Isaac Newton
Telescope (INT) in La Palma (Spain).
Objects:
--------------------------------------------------------------
RA (2000) DE Designation(s)
--------------------------------------------------------------
13 44 22.59 +48 01 43.2 HAT-P-3 = 2MASS J13442258+4801432
13 57 33.47 +43 29 36.8 HAT-P-12 = 2MASS J13573347+4329367
10 22 43.51 +50 07 42.0 HAT-P-22 = HD 233731
14 29 18.42 -03 26 40.1 WASP-039 = 2MASS J14291840-0326403
23 46 39.98 +31 09 21.4 WASP-060 = 2MASS J23463997+3109213
--------------------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 101 5 Final photometric parameters for the five
exoplanetary systems analysed in this work
listphot.dat 49 17 List of photometric files
phot/* . 17 Individual light curve files
rv/* . 5 Individual velocity curve files
--------------------------------------------------------------------------------
See also:
J/A+A/554/A28 : Qatar-1 differential light curve (Covino+, 2013)
J/A+A/575/A111 : GAPS V: Global analysis of the XO-2 system (Damasso+, 2015)
J/A+A/575/L15 : TrES-4b RV and Ic curves (Sozzetti+, 2015)
J/A+A/578/A64 : Velocity curve of τ Boo A (Borsa+, 2015)
J/A+A/579/A136 : HAT-P-36 and WASP-11/HAT-P-10 light curves (Mancini+, 2015)
J/A+A/583/A135 : XO-2N and XO-2S spectra (Biazzo+, 2015)
J/A+A/588/A118 : Pr0211 RVs, photometry and activity indexes (Malavolta+, 2016)
J/A+A/599/A90 : Characterization of HD 108874 system (Benatti+, 2017)
J/A+A/602/A107 : 231 transiting planets eccentricity and mass (Bonomo+, 2017)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 A8 --- System System name
10 A1 --- n_System [abcde] Note on System (1)
12- 21 F10.8 d Porb Orbital period
23- 31 F9.8 d e_Porb rms uncertainty on Porb
33- 43 F11.5 d BJD Time of mid-transit (BJD-2400000)
45- 50 F6.5 d e_BJD rms uncertainty on BJD
52- 56 F5.2 deg Incl Orbital inclination
58- 61 F4.2 deg e_Incl rms uncertainty on Incl
63- 69 F7.5 --- r*+rP Sum of fractional stellar and planetary radii
71- 77 F7.5 --- e_r*+rP rms uncertainty on r*+rP
79- 85 F7.5 --- rP/r* Ratio of fractional planetary to stellar radii
87- 93 F7.5 --- e_rP/r* rms uncertainty on rP/r*
95- 98 A4 --- phot Indicates photometric data in
subdirectory phot
100-101 A2 --- rv Indicates radial velocity data in
subdirectory rv
--------------------------------------------------------------------------------
Note (1): Notes as follows:
a = The photometric parameters of HAT-P-3 were estimated from the light curves
presented in this work (Fig. 1), incorporating results from
Southworth (2012. Cat. J/MNRAS/426/1291) (see text).
Photometric files for CA 1.23m I and Cassini i.
b = The photometric parameters of HAT-P-12 were estimated from the light curves
presented in this work, see Fig. 2.
Photometric files for CA 2.2m ugri, CA 1.23m IR, INT r and Cassini r
c = The photometric parameters of HAT-P-22 were estimated from the light curves
taken from different works (Bakos et al., 2011, Cat. J/ApJ/742/116;
Basturk et al., 2015, ASP Conference Series, 496, 370;
Hinse et al., 2015, . Astron. Space Sci, 32, 21;
Turner et al., 2016MNRAS.459..789T 2016MNRAS.459..789T), see Fig. 3.
d = The photometric parameters of WASP-39 were estimated from the light curves
taken from different works (Faedi et al., 2011, Cat. J/A+A/531/A40;
Ricci et al., 2015, Cat. J/PASP/127/143;
Maciejewski et al., 2016AcA....66...55M 2016AcA....66...55M), see Fig. 4.
e = The photometric parameters of WASP-60 were estimated from the light curve
presented in this work and the one from Turner et al.
(2017MNRAS.472.3871T 2017MNRAS.472.3871T), see Fig. 5.
Photometric file for CA 1.23m I.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: listphot.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 A8 --- System System name
10- 19 A10 "date" Obs.date Observation date
21- 28 A8 --- Inst Instrument
30 A1 --- Band [ugriIR] Band
32- 49 A18 --- FileName Name of the file with photometry in
subdirectory phot
--------------------------------------------------------------------------------
Byte-by-byte Description of file: phot/*
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 F12.6 d BJD(TDB) Barycentric JD for the midpoint of observation
16- 24 F9.6 mag mag Differential magnitude of the target
28- 35 F8.6 mag e_mag Measurement error of the magnitude
--------------------------------------------------------------------------------
Byte-by-byte Description of file: rv/*
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 F12.6 d BJD(TDB) Barycentric JD for the midpoint of observation
14- 21 F8.1 m/s RV Radial Velocity (RV) of the target
23- 26 F4.1 m/s e_RV Measurement error of RV
28- 31 F4.1 m/s S/N Signal-to-noise ration
--------------------------------------------------------------------------------
Acknowledgements:
Luigi Mancini, lmancini(at)roma2.infn.it, University of Rome Tor Vergata
References:
Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28
Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D
Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E
Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D
Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111
Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15
Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64
Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136
Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D, Cat. J/A+A/581/L6
Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135
Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118
Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90
Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E
Bonomo et al. Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107
Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G
(End) L. Mancini [Rome Tor Vergata Univ. Italy], P. Vannier [CDS] 16-Feb-2018