J/A+A/619/A92 Laboratory analysis of methylketene (Bermuez+, 2018)
The millimeter-wave spectrum of methyl ketene and its astronomical search.
Bermuez C., Tercero B., Motiyenko R.A., Margules L., Cernicharo J.,
Ellinger Y., Guillemin J.-C.
<Astron. Astrophys. 619, A92 (2018)>
=2018A&A...619A..92B 2018A&A...619A..92B (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics ; Interstellar medium
Keywords: ISM: molecules - methods: laboratory: molecular - submillimeter: ISM -
molecular data - line: identification
Abstract:
The analysis of isomeric species of a compound observed in the
interstellar medium is a useful tool to understand the chemistry of
complex organic molecules. It could, likewise, assist to detect new
species.
Our goal consists on analyzing one of the two most stable species of
the C3H4O family, methyl ketene, whose actual rotational parameters
are not precise enough to allow its detection in the ISM. The obtained
parameters will be used to search for it in the high-mass star-forming
regions Orion KL and Sagittarius B2 as well as in the cold dark clouds
TMC-1 in Taurus Molecular Cloud and Barnard 1 (B1-b).
Description:
Millimeterwave room-temperature rotational spectrum of methyl ketene
was recorded from 50 to 330∼GHz. The internal rotation analysis of its
ground state and first torsional excited state was performed with the
rho-axis-method employing RAM36 program.
More than 3000 transitions of the rotational spectrum of the ground
state (Kamax=18) and first torsional excited state Kamax=13 of
methyl ketene were fitted using a Hamiltonian that contains 41
parameters with RMS of 41kHz. Column density limits were calculated
but no lines were detected in the ISM belonging to methyl ketene.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 74 3253 Transitions included in the fit of v18=0,1 state
table4.dat 98 27514 Transitions of v18=0,1 states predicted from fit
--------------------------------------------------------------------------------
See also:
J/A+A/493/565 : Deuterated and 15N ethyl cyanides (Margules+, 2009)
J/A+A/538/A51 : Rotational spectrum of CH3CH(NH2)CN (Mollendal+, 2012)
J/A+A/538/A119 : Spectrum of 18O-methyl formate (HCO18OCH3) (Tercero+ 20
J/A+A/540/A51 : Submm spectrum of deuterated glycolaldehydes (Bouchez+, 2012)
J/A+A/543/A46 : Submillimeter spectrum of HCOOCD2H (Coudert+, 2012)
J/A+A/543/A135 : New analysis of 13C-CH3CH2CN up to 1THz (Richard+, 2012)
J/A+A/544/A82 : Rotational spectroscopy of diisocyanomethane (Motiyenko+ 2012)
J/A+A/548/A71 : Spectroscopy and ISM detection of formamide (Motiyenko+, 2012)
J/A+A/549/A96 : mm and sub-mm spectra of 13C-glycolaldehydes (Haykal+ 2013)
J/A+A/549/A128 : Singly deuterated isotopologues of formamide (Kutsenko+, 2013)
J/A+A/552/A117 : Mono-deuterated dimethyl ether (Richard+, 2013)
J/A+A/553/A84 : (Sub)mm spectrum of deuterated methyl cyanides (Nguyen+, 2013)
J/A+A/559/A44 : Rotational spectrum of MAAN (CH2NCH2CN) (Motiyenko+, 2013)
J/ApJ/779/119 : HCOOCH2D detection in Orion KL (Coudert+, 2013)
J/A+A/563/A137 : THz spectrum of methylamine (Motiyenko+, 2014)
J/A+A/568/A58 : HCOO13CH3 rotational spectrum (Haykal+, 2014)
J/A+A/579/A46 : Mono-13C acetaldehydes mm/submm spectra (Margules+ 2015)
J/A+A/587/A152 : Rotational spectrum of 13C methylamine (Motiyenko+, 2016)
J/A+A/590/A93 : Doubly 13C-substituted ethyl cyanide (Margules+, 2016)
J/A+A/592/A43 : Millimeter wave spectra of carbonyl cyanide (Bteich+, 2016)
J/A+A/601/A49 : CH3NHCHO rotational spectroscopy (Belloche+, 2017)
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
3- 4 I2 --- m0 Quantum number m for upper level
7- 8 I2 --- J0 Quantum number J for upper level
11- 12 I2 --- Ka0 Quantum number Ka for upper level
15- 16 I2 --- Kc0 Quantum number Kc for upper level
21- 22 I2 --- m1 Quantum number m for lower level
25- 26 I2 --- J1 Quantum number J for lower level
29- 30 I2 --- Ka1 Quantum number Ka for lower level
33- 34 I2 --- Kc1 Quantum number Kc for lower level
39- 49 F11.4 MHz Freq Measured frequency
56- 61 F6.4 MHz unc Uncertainty associated to frequency
69- 74 F6.4 MHz O-C Difference between calculated and
observed frequency
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
3- 4 I2 --- m0 Quantum number m for upper level
7- 8 I2 --- J0 Quantum number J for upper level
11- 12 I2 --- Ka0 Quantum number Ka for upper level
15- 16 I2 --- Kc0 Quantum number Kc for upper level
21- 22 I2 --- m1 Quantum number m for lower level
25- 26 I2 --- J1 Quantum number J for lower level
29- 30 I2 --- Ka1 Quantum number Ka for lower level
33- 34 I2 --- Kc1 Quantum number Kc for lower level
39- 49 F11.4 MHz Freq Calculated frequency
55- 62 F8.4 MHz unc ? Uncertainty associated to calculation
67- 74 F8.4 D+2 Smu2 Transition strength: mu2*S
79- 87 E9.4 --- Aup Einstein coefficients
90- 98 F9.4 cm-1 Elow Energy of the lower state level
--------------------------------------------------------------------------------
Acknowledgements:
Celina Bernudez, celina.bermudez(at)univ-lille1.fr
(End) Patricia Vannier [CDS] 31-Jul-2018