J/A+A/620/A163      Cores in California molecular cloud         (Zhang+, 2018)

Physical properties and chemical composition of the cores in the California molecular cloud. Zhang G.-Y., Xu J.-L., Vasyunin A.I., Semenov D.A., Wang J.-J., Dib S., Liu T., Liu S.-Y., Zhang C.-P., Liu X.-L., Wang K., Li D., Wu Z.-Z., Yuan J.-H., Li D.-L., Gao Y. <Astron. Astrophys. 620, A163 (2018)> =2018A&A...620A.163Z 2018A&A...620A.163Z (SIMBAD/NED BibCode)
ADC_Keywords: Molecular clouds ; Abundances ; Spectroscopy Keywords: stars: formation - ISM: abundances - astrochemistry - dust, extinction - ISM: molecules Abstract: We extracted 300 cores, of which 33 are protostellar and 267 are starless cores. About 51% (137 of 267) of the starless cores are prestellar cores. Three cores have the potential to evolve into high-mass stars. The prestellar core mass function (CMF) can be well fit by a log-normal form. The high-mass end of the prestellar CMF shows a power-law form with an index α=-0.9±0.1 that is shallower than that of the Galactic field stellar mass function. Combining the mass transformation efficiency (ε) from the prestellar core to the star of 15±1% and the core formation efficiency (CFE) of 5.5%, we suggest an overall star formation efficiency of about 1% in the CMC. In the single-pointing observations with the IRAM 30m telescope, we find that 6 cores show blue-skewed profile, while 4 cores show red-skewed profile. [HCO+]/[HNC] and [HCO+]/[N2H+] in protostellar cores are higher than those in prestellar cores; this can be used as chemical clocks. The best-fit chemical age of the cores with line observations is ∼50000 years. Description: The Herschel data include PACS 70 and 160um (Poglitsch et al., 2010A&A...518L...2P 2010A&A...518L...2P) and SPIRE 250, 350, and 500um (Griffin et al., 2010A&A...518L...3G 2010A&A...518L...3G) imaging for the CMC (Harvey et al., 2013ApJ...764..133H 2013ApJ...764..133H, Cat. J/ApJ/764/133). We used the Harvey et al. (2013ApJ...764..133H 2013ApJ...764..133H, Cat. J/ApJ/764/133) version instead of the current HSA pipeline products, see Harvey et al. (2013ApJ...764..133H 2013ApJ...764..133H, Cat. J/ApJ/764/133). We made a high-resolution (18.2") H2 column density map with with Herschel four-band emission from 160 to 500um. Using this map, we extracted a complete core sample with the fellwalker algorithm. Single-pointing observations at 30 positions near 90GHz were carried out in April 2014 using the IRAM 30m telescope on Pico Veleta, Spain. The frequency coverage includes the ground rotational (1-0) transition of H13CO+, HN13C, C2H, HCN, HCO+, HNC, N2H, C18O, and 13CO. The single-pixel heterodyne receiver of the Eight MIxer Receiver (EMIR) with a band-width of 16GHz in two orthogonal polarizations was employed to simultaneously observe these nine lines. The fast Fourier transform spectrometer (FTS)backends were set to 200kHz (about 0.65km/s at 90GHz) resolution. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file cores.dat 86 300 Parameters of 300 cores obtained from the Herschel H2 column density map (table 3) table1.dat 88 30 IRAM 30m observed positions h13cop.dat 62 30 Properties of H13CO+(1-0) (table 4) hn13c.dat 62 30 Properties of HN13C (1-0) (table 4) n2hp.dat 69 30 Properties of N2H+ (1-0) (table 4) c2h.dat 70 30 Properties of C2H (1-0) (table 4) hcn.dat 70 30 Properties of HCN (1-0) (table 4) hcop.dat 70 30 Properties of HCO+ (1-0) (table 4) hnc.dat 70 30 Properties of HNC (1-0) (table 4) c18o.dat 58 30 Properties of C18O (1-0) (table 4) 13co.dat 59 30 Properties of 13CO (1-0) (table 4) -------------------------------------------------------------------------------- See also: J/ApJ/764/133 : Auriga-California giant molecular cloud (Harvey+, 2013) J/ApJ/786/37 : Auriga-California molecular cloud (Broekhoven-Fiene+, 2014) J/A+A/606/A100 : YSOs in California Molecular Cloud (Lada+, 2017) Byte-by-byte Description of file: cores.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- Core Core number (CMCHerschel-NNN) 17- 18 I2 h RAh Right ascension (J2000.0) (1) 20- 21 I2 min RAm Right ascension (J2000.0) 23- 28 F6.3 s RAs Right ascension (J2000.0) 30 A1 --- DE- Declination sign (J2000.0) (1) 31- 32 I2 deg DEd Declination (J2000.0) 34- 35 I2 arcmin DEm Declination (J2000.0) 37- 41 F5.2 arcsec DEs Declination (J2000.0) 43- 47 F5.1 arcsec MajAxis Major axis of the ellipse (2) 49- 52 F4.1 arcsec MinAxis Minor axis of the ellipse 54- 58 F5.1 deg PA Position angle 60- 63 F4.2 pc Rad Core radius (3) 65- 68 F4.1 K Td Dust temperature (4) 70- 73 F4.1 cm-3 n(H2) Number density (5) 75- 78 F4.1 Msun M Core mass 80- 82 F3.1 Msun M(BE) Critical Bonnor-Ebert mass 84- 86 A3 --- Type Core type (6) -------------------------------------------------------------------------------- Note (1): Right ascension and declination are the center positions of the core ellipse shape. The cores are sorted from north to south. Note (2): The values of the axes of the ellipse are equal to the FWHMs of the equivalent Gaussian. Note (3): The core radius is deconvolved to remove the effect of the telescope beam. Note (4): The average dust temperature in core ellipse shape. Note (5): The number density is calculated on the assumption that the core is spherical. Note (6): Core type as follows: USL = gravitationally unbound starless core PRE = bound prestellar core PRO = protostellar core -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- No Observation number (CMC-NN) 7 A1 --- n_No [*] Note on No (1) 8- 9 I2 h RAh Single-pointing observation right ascension (J2000.0) 11- 12 I2 min RAm Single-pointing observation right ascension (J2000.0) 14- 19 F6.3 s RAs Single-pointing observation right ascension (J2000.0) 21 A1 --- DE- Single-pointing observation declination sign (J2000.0) 22- 23 I2 deg DEd Single-pointing observation declination (J2000.0) 25- 26 I2 arcmin DEm Single-pointing observation declination (J2000.0) 28- 32 F5.2 arcsec DEs Single-pointing observation declination (J2000.0) 34- 37 F4.1 K Td Dust average temperature in one beam (29", IRAM 30m|86GHz) 39- 42 F4.1 10+21cm-2 SH2 H2 average column density in one beam ({SIGMA}H2) 44- 47 F4.2 pc R ? Radius 49- 52 F4.1 10+5cm-3 n(H2) ? Number density 54- 57 F4.1 Msun M ? Herschel core mass 59- 61 F3.1 Msun MV ? Virial mass 63- 65 F3.1 Msun M(BE) ? Critical Bonnor-Ebert mass 67- 72 A6 --- Type Core type (2) 74- 88 A15 --- Core Core number (CMCHerschel-NNN) ------------------------------------------------------------------------------- Note (1): CMC-2 is galaxy 3C 111. Note (2): Core type as follows: PRE = gravitationally bound prestellar core PRO = protostellar core REF = reference position that is offset from the cores Galaxy = galaxy ------------------------------------------------------------------------------- Byte-by-byte Description of file: h13cop.dat hn13c.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- No Observation number (CMC-NN) 8- 11 F4.2 K Tmb ? Corrected main-beam temperature 13- 16 F4.2 K e_Tmb ? rms uncertainty on Tmb 18- 21 F4.2 K.km/s I ? Integrated main-beam temperature 23- 26 F4.2 K.km/s e_I ? rms uncertainty on I 28- 31 F4.2 km/s FWHM ? Full width at half-maximum of the Gaussian fitting profile 33- 36 F4.2 km/s e_FWHM ? rms uncertainty on FWHM 38- 42 F5.2 km/s Vlsr ? Local standard of rest velocity 44- 47 F4.2 km/s e_Vlsr ? rms uncertainty on Vlsr 49- 52 F4.2 --- depth ? Optical depth (1) 54- 57 F4.2 10+12cm-2 N ? Column density 59- 62 F4.2 10-11 X ? Abundance -------------------------------------------------------------------------------- Note (1): We assumed a constant abundance ratio of 50 for [C/13C] in the CMC. The optical depths of H13CO+ and HCO+ and HN13C and HNC were obtained by comparing the measured brightness temperatures. -------------------------------------------------------------------------------- Byte-by-byte Description of file: n2hp.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- No Observation number (CMC-NN) 8- 11 F4.2 K Tmb ? Corrected main-beam temperature 13- 16 F4.2 K e_Tmb ? rms uncertainty on Tmb 18- 21 F4.2 K.km/s I ? Integrated main-beam temperature 23- 26 F4.2 K.km/s e_I ? rms uncertainty on I 28- 31 F4.2 km/s FWHM ? Full width at half-maximum of the Gaussian fitting profile 33- 37 F5.2 km/s e_FWHM ? rms uncertainty on FWHM 39- 44 F6.2 km/s Vlsr ? Local standard of rest velocity 46- 49 F4.2 km/s e_Vlsr ? rms uncertainty on Vlsr 51- 54 F4.2 --- depth ? Optical depth (1) 56- 59 F4.2 --- e_depth ? rms uncertainty on depth (1) 61- 64 F4.2 10+13cm-2 N ? Column density (1) 66- 69 F4.2 10-10 X ? Abundance -------------------------------------------------------------------------------- Note (1): Optical depth and column density for N2H+ are estimated by its component JF1F=(101-012). -------------------------------------------------------------------------------- Byte-by-byte Description of file: c2h.dat hcn.dat hcop.dat hnc.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- No Observation number (CMC-NN) 8- 11 F4.2 K Tmb ? Corrected main-beam temperature 13- 16 F4.2 K e_Tmb ? rms uncertainty on Tmb 18- 21 F4.2 K.km/s I ? Integrated main-beam temperature 23- 26 F4.2 K.km/s e_I ? rms uncertainty on I 28- 31 F4.2 km/s FWHM ? Full width at half-maximum of the Gaussian fitting profile 33- 36 F4.2 km/s e_FWHM ? rms uncertainty on FWHM 38- 42 F5.2 km/s Vlsr ? Local standard of rest velocity 44- 47 F4.2 km/s e_Vlsr ? rms uncertainty on Vlsr 49- 53 F5.2 --- depth ? Optical depth (1) 55- 59 F5.2 --- e_depth ? rms uncertainty on depth 61- 64 F4.2 10+14cm-2 N ? Column density (1) 66- 70 F5.2 10-9 X ? Abundance -------------------------------------------------------------------------------- Note (1): Optical depth for C2H is estimated by its main component JF=(3/2,2-1/2,1) with the HFS method in the CLASS software. Column density is also estimated by its main component. Optical depth and column density for HCN are estimated by its main component JF=(12-01). -------------------------------------------------------------------------------- Byte-by-byte Description of file: c18o.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- No Observation number (CMC-NN) 8- 11 F4.2 K Tmb ? Corrected main-beam temperature 13- 16 F4.2 K e_Tmb ? rms uncertainty on Tmb 18- 21 F4.2 K.km/s I ? Integrated main-beam temperature 23- 26 F4.2 K.km/s e_I ? rms uncertainty on I 28- 31 F4.2 km/s FWHM ? Full width at half-maximum of the Gaussian fitting profile 33- 36 F4.2 km/s e_FWHM ? rms uncertainty on FWHM 38- 42 F5.2 km/s Vlsr ? Local standard of rest velocity 44- 47 F4.2 km/s e_Vlsr ? rms uncertainty on Vlsr 49- 52 F4.2 10+15cm-2 N ? Column density 54- 58 F5.2 10-8 X ? Abundance -------------------------------------------------------------------------------- Byte-by-byte Description of file: 13co.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- No Observation number (CMC-NN) 8- 12 F5.2 K Tmb Corrected main-beam temperature 14- 17 F4.2 K e_Tmb rms uncertainty on Tmb 19- 23 F5.2 K.km/s I Integrated main-beam temperature 25- 28 F4.2 K.km/s e_I rms uncertainty on I 30- 33 F4.2 km/s FWHM Full width at half-maximum of the Gaussian fitting profile 35- 38 F4.2 km/s e_FWHM rms uncertainty on FWHM 40- 44 F5.2 km/s Vlsr Local standard of rest velocity 46- 49 F4.2 km/s e_Vlsr rms uncertainty on Vlsr 51- 54 F4.2 10+16cm-2 N Column density 56- 59 F4.2 10-6 X Abundance -------------------------------------------------------------------------------- Acknowledgements: Guoyin Zhang, zgyin(at)nao.cas.cn
(End) Guoyin Zhang [NAOC, China], Patricia Vannier [CDS] 05-Nov-2018
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line