J/A+A/622/A172      GTC transit light curves of HAT-P-11b        (Murgas+, 2019)

The GTC exoplanet transit spectroscopy survey. X. Stellar spots versus Rayleigh scattering: the case of HAT-P-11b. Murgas F., Chen G., Palle E., Nortmann L., Nowak G. <Astron. Astrophys. 622, A172 (2019)> =2019A&A...622A.172M 2019A&A...622A.172M (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Spectroscopy Keywords: planets and satellites: individual: HAT-P-11b - planets and satellites: atmospheres - techniques: spectroscopic Abstract: Rayleigh scattering in a hydrogen-dominated exoplanet atmosphere can be detected using ground- or space-based telescopes. However, stellar activity in the form of spots can mimic Rayleigh scattering in the observed transmission spectrum. Quantifying this phenomena is key to our correct interpretation of exoplanet atmospheric properties. We obtained Gran Telescopio Canarias (GTC) long-slit optical spectroscopy of two transits of HAT-P-11b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) on August 30, 2016 and September 25, 2017. By fitting both transits together, we find a slope in the transmission spectrum showing an increase of the planetary radius towards blue wavelengths. Closer inspection of the transmission spectrum of the individual data sets reveals that the first transit presents this slope while the transmission spectrum of the second data set is flat. Additionally, we detect hints of Na absorption on the first night, but not on the second. We conclude that the transmission spectrum slope and Na absorption excess found in the first transit observation are caused by unocculted stellar spots. Modeling the contribution of unocculted spots to reproduce the results of the first night we find a spot filling factor of delta=0.62+0.20-0.17 and a spot-to-photosphere temperature difference of ΔT=429+184-299K. Description: We present here the transit light curves of the Neptune-sized exoplanet HAT-P-11b obtained on August 30, 2016 and September 25, 2017 using the 10.4-m GTC telescope. The spectra were obtained using OSIRIS instrument in its long-slit spectroscopy mode (40 arcsec slit, R1000B grism, wavelength coverage 360-780 nm). We provide auxiliary parameters of the observations that were use to detrend the original light curves. These parameters are: airmass, position of the stars in spatial and dispersion direction, the relative FWHM of the spectral profile in spatial and dispersion direction, and telescope rotator angle. Objects: -------------------------------------------------------------- RA (2000) DE Designation(s) -------------------------------------------------------------- 19 50 50.24 +48 04 51.09 HAT-P-11 = 2MASS J19505021+4804508 -------------------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file list.dat 40 24 List of light curve files gtcwlcn1.dat 94 685 HAT-P-11b GTC transit white light curve (2016/08/30) gtcwlcn2.dat 94 686 HAT-P-11b GTC transit white light curve (2017/09/25) lc_n1/* . 11 Individual spectroscopic light curves (2016/08/30) lc_n2/* . 11 Individual spectroscopic light curves (2017/09/25) -------------------------------------------------------------------------------- See also: J/A+A/563/A41 : WASP-43 OSIRIS transmission spectroscopy (Murgas+, 2014) J/A+A/589/A62 : GTC transit light curves of CoRoT-29b (Palle+, 2016) J/A+A/594/A65 : GTC transit light curves of HAT-P-32b (Nortmann+, 2016) J/A+A/600/L11 : GTC transit light curves of WASP-52b (Chen+, 2017) J/A+A/605/A114 : GTC transit light curves of WASP-48b (Murgas+, 2017) J/A+A/616/A145 : GTC transit light curves of WASP-127b (Chen+, 2018) Byte-by-byte Description of file: list.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 nm Range Wavelength interval 13- 29 A17 --- FileName Name of the table with photometry 31- 40 A10 "date" Obs.date Observation date -------------------------------------------------------------------------------- Byte-by-byte Description of file: gtcwlcn1.dat gtcwlcn2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 F16.8 d BJD Barycentric Julian Date (TDB standard) 18- 25 F8.6 --- Flux Relative flux 27- 34 F8.6 --- e_Flux Uncertainty of relative flux 36- 44 F9.6 pix posX Drift of star on CCD in spatial direction 46- 54 F9.6 pix posY Drift of star on CCD in dispersion direction 56- 64 F9.6 pix fwhmX Relative change of full width at half maximum of the stellar absorption line profile 66- 74 F9.6 pix fwhmY Full width at half maximum of the stellar spatial profile 76- 83 F8.6 --- Airm Airmass during observation 85- 94 F10.6 deg RotAng Telescope rotator angle during observations -------------------------------------------------------------------------------- Byte-by-byte Description of file: lc_n1/* lc_n2/* -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 F5.1 nm Lambda1 Wavelength of the left border of the channel 7- 11 F5.1 nm Lambda2 Wavelength of the right border of the channel 13- 28 F16.8 d BJD Barycentric Julian Date (TDB standard) 30- 37 F8.6 --- Flux Relative flux 39- 46 F8.6 --- e_Flux Uncertainty of relative flux 48- 56 F9.6 pix posX Drift of star on CCD in spatial direction 58- 66 F9.6 pix posY Drift of star on CCD in dispersion direction 68- 76 F9.6 pix fwhmX Relative change of full width at half maximum of the stellar absorption line profile 78- 86 F9.6 pix fwhmY Full width at half maximum of the stellar spatial profile 88- 95 F8.6 --- Airm Airmass during observation 97-106 F10.6 deg RotAng Telescope rotator angle during observations -------------------------------------------------------------------------------- Acknowledgements: Felipe Murgas, fmurgas(at)iac.es References: Murgas et al., Paper I 2014A&A...563A..41M 2014A&A...563A..41M, Cat. J/A+A/563/A41 Parviainen et al., Paper II 2016A&A...585A.114P 2016A&A...585A.114P Palle et al., Paper III 2016A&A...589A..62P 2016A&A...589A..62P, Cat. J/A+A/589/A62 Nortmann et al., Paper IV 2016A&A...594A..65N 2016A&A...594A..65N, Cat. J/A+A/594/A65 Chen et al., Paper V 2017A&A...600A.138C 2017A&A...600A.138C Chen et al., Paper VI 2017A&A...600L..11C 2017A&A...600L..11C, Cat. J/A+A/600/L11 Murgas et al., Paper VII 2017A&A...605A.114M 2017A&A...605A.114M, Cat. J/A+A/605/A114 Parviainen et al., Paper VIII 2018A&A...609A..33P 2018A&A...609A..33P Chen et al., Paper IX 2018A&A...616A.145C 2018A&A...616A.145C, Cat. J/A+A/616/A145
(End) Patricia Vannier [CDS] 16-Jan-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line