J/A+A/622/A8 NGC 3184, 4736, 5055 and 5194 LOFAR & WSRT maps (Heesen+, 2019)
Calibrating the relation of low-frequency radio continuum to star formation rate
at 1 kpc scale with LOFAR.
Heesen V., Buie E. II, Huff C.J., Perez L.A., Woolsey J.G., Rafferty D.A.,
Basu A., Beck R., Brinks E., Horellou C., Scannapieco E., Brueggen M.,
Dettmar R.-J., Sendlinger K., Nikiel-Wroczynski B., Chyzy K.T.,
Best P.N., Heald G.H., Paladino R.
<Astron. Astrophys. 622, A8 (2019)>
=2019A&A...622A...8H 2019A&A...622A...8H (SIMBAD/NED BibCode)
ADC_Keywords: Galaxy catalogs; Radio sources; Morphology
Keywords: radiation mechanisms: non-thermal - cosmic rays -
galaxies: magnetic fields - galaxies: star formation -
radio continuum: galaxies
Abstract:
Radio continuum (RC) emission in galaxies allows us to measure star
formation rates (SFRs) unaffected by extinction due to dust, of which
the low-frequency part is uncontaminated from thermal (free-free)
emission.
We calibrate the conversion from the spatially resolved 140MHz RC
emission to the SFR surface density (SFR) at 1kpc scale. Radio
spectral indices give us, by means of spectral ageing, a handle on the
transport of cosmic rays using the electrons as a proxy for GeV
nuclei.
We used recent observations of three galaxies (NGC 3184, 4736, and
5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw
Frequency ARay (LOFAR) data of NGC 5194. Maps were created with the
facet calibration technique and converted to radio ΣSFR maps
using the Condon relation. We compared these maps with hybrid
ΣSFR maps from a combination of GALEX far-ultraviolet and
Spitzer 24um data using plots tracing the relation at the highest
angular resolution allowed by our data at 1.2x1.2-kpc2 resolution.
Description:
We present maps of four nearby galaxies obtained with the
Low-frequency ARray (LOFAR) using the high band antennae (HBA). The
maps were produced with the facet calibration technique, ensuring
direction-dependent calibration, using the FACTOR pipeline. These maps
were imaged and deconvolved with the Common Astronomy Software
Applications using the multi-frequency-multi-scale CLEAN algorithm.
Finally, the maps were convolved in the Astronomical Image Processing
System (AIPS) to a circular synthesised beam. In order to measure flux
densities, we integrated in ellipses encompassing the 3-sigma contour
line. In addition, we present maps and flux densities at the same
angular resolution from archival observations with the Westerbork
Synthesis Radio Telescope (WSRT).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 97 4 Radio properties of sample galaxies
list.dat 136 8 List of fits files
fits/* . 8 Individual fits files
--------------------------------------------------------------------------------
See also:
J/A+A/622/A1 : LOFAR Two-metre Sky Survey DR1 source catalog (Shimwell+, 2019)
J/A+A/622/A4 : LOFAR observations XMM-LSS field (Hale+, 2019)
J/A+A/622/A11 : LoTSS/HETDEX. Optical quasars. I. (Guerkan+, 2019)
J/A+A/622/A13 : VLA double-double radio galaxy candidates images
(Mahatma+, 2019)
J/A+A/622/A15 : Broad absorption line quasars in LDR1 (Morabito+, 2019)
J/A+A/622/A22 : Abell 1914 multiwavelength radio images (Mandal+, 2019)
J/A+A/622/A23 : LoTSS HCG and MLCG systems (Nikiel-wroczynski+, 2019)
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 F10.6 deg RAdeg Right ascension (J2000)
11- 20 F10.6 deg DEdeg Declination (J2000)
22- 29 A8 --- Name Galaxy name
31- 34 F4.1 arcsec FWHM Angular resolution, referred to as the full
width at half maximum (FWHM) of the circular
synthesized beam
36- 38 I3 MHz nu1 Observed frequency, ν1
40- 43 I4 MHz nu2 Observed frequency, ν2
45- 47 I3 uJy/beam sigma1 rms map noise at nu1
49- 50 I2 uJy/beam sigma2 rms map noise at nu2
52- 56 F5.3 Jy S1 Integrated flux density at nu1
58- 62 F5.3 Jy e_S1 rms uncertainty on S1
64- 68 F5.3 Jy S2 Integrated flux density at nu2
70- 74 F5.3 Jy e_S2 rms uncertainty on S2
76- 80 F5.2 --- alpha Integrated radio spectral index between
nu1 and nu2
82- 85 F4.2 --- e_alpha rms uncertainty on alpha
87- 89 F3.1 arcmin Area1 Major axis of the elliptical integration area
90 A1 --- --- [x]
91- 93 F3.1 arcmin Area2 Minor axis of the elliptical integration area
95- 97 A3 deg PA Position angle of the galaxy's major axis from
Walter et al. (2008, Cat. J/AJ/136/2563)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: list.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 F9.5 deg RAdeg Right Ascension of center (J2000)
10- 18 F9.5 deg DEdeg Declination of center (J2000)
20- 27 A8 --- Name Galaxy name
29- 32 I4 --- Nx [1040] Number of pixels along X-axis
34- 37 I4 --- Ny [1040] Number of pixels along Y-axis
39- 48 A10 "date" Obs.date Observation date
50- 57 F8.3 MHz Freq Observed frequency
59- 62 I4 Kibyte size Size of FITS file
64- 95 A32 --- FileName Name of FITS file, in subdirectory fits
97-136 A40 --- Title Title of the FITS file
--------------------------------------------------------------------------------
Acknowledgements:
Volker Heesen, volker.heesen(at)hs.uni-hamburg.de
References:
Shimwell et al., Paper I 2019A&A...622A...1S 2019A&A...622A...1S, Cat. J/A+A/622/A1
Williams et al., Paper II 2019A&A...622A...2W 2019A&A...622A...2W
Duncan et al., Paper III 2019A&A...622A...3D 2019A&A...622A...3D
Hale et al., Paper IV 2019A&A...622A...4H 2019A&A...622A...4H, Cat. J/A+A/622/A4
de Gasperin et al., Paper V 2019A&A...622A...5D 2019A&A...622A...5D
Arias et al., Paper VI 2019A&A...622A...6A 2019A&A...622A...6A
Emig et al., Paper VII 2019A&A...622A...7E 2019A&A...622A...7E
Heesen et al., Paper VIII 2019A&A...622A...8H 2019A&A...622A...8H, Cat, J/A+A/622/A8
Miskolczi et al., Paper IX 2019A&A...622A...9M 2019A&A...622A...9M
Croston et al., Paper X 2019A&A...622A..10C 2019A&A...622A..10C
Gurkan et al., Paper XI 2019A&A...622A..11G 2019A&A...622A..11G, Cat. J/A+A/622/A11
Hardcastle et al., Paper XII 2019A&A...622A..12H 2019A&A...622A..12H
Mahatma et al., Paper XIII 2019A&A...622A..13M 2019A&A...622A..13M, Cat. J/A+A/622/A13
Mooney et al., Paper XIV 2019A&A...622A..14M 2019A&A...622A..14M
Morabito et al., Paper XV 2019A&A...622A..15M 2019A&A...622A..15M, Cat. J/A+A/622/A15
O'Sullivan et al., Paper XVI 2019A&A...622A..16O 2019A&A...622A..16O
Sabater et al., Paper XVII 2019A&A...622A..17S 2019A&A...622A..17S
Stacey et al., Paper XVIII 2019A&A...622A..18S 2019A&A...622A..18S
Botteon et al., Paper XIX 2019A&A...622A..19B 2019A&A...622A..19B
Hoang et al., Paper XX 2019A&A...622A..20H 2019A&A...622A..20H
Hoang et al., Paper XXI 2019A&A...622A..21H 2019A&A...622A..21H
Mandal et al., Paper XXII 2019A&A...622A..22M 2019A&A...622A..22M
Nikiel-Wroczynski et al., Paper XXIII 2019A&A...622A..23N 2019A&A...622A..23N, Cat. J/A+A/622/A22
Savini et al., Paper XXIV 2019A&A...622A..24S 2019A&A...622A..24S
Wiber et al., Paper XXV 2019A&A...622A..25W 2019A&A...622A..25W
(End) Patricia Vannier [CDS] 14-Feb-2019