J/A+A/625/A139      Thermal properties of slow asteroids      (Marciniak+, 2019)

Thermal properties of slowly rotating asteroids: results from targeted survey. Marciniak A., Ali-Lagoa V, Mueller T.G., Szakats R., Molnar L., Pal A., Podlewska-Gaca E., Parley N., Antonini P., Barbotin E., Behrend R., Bernasconi L., Butkiewicz-Bak M., Crippa R., Duffard R., Ditteon R., Feuerbach M., Fauvaud S., Garlitz J., Geier S., Goncalves R., Grice J., Grzeskowiak I., Hirsch R., Horbowicz J., KamiNski K., KamiNska M.K., Kim D.-H., Kim M.-J., Konstanciak I., Kudak V., Kulczak P., Maestre J.L., Manzini F., Marks S., Monteiro F., Ogloza W., Oszkiewicz D., Pilcher F., Perig V., Polakis T., PoliNska M., Roy R., Sanabria J.J., Santana-Ros T., Skiff B., Skrzypek J., Sobkowiak K., Sonbas E., Thizy O., Trela P., Urakawa S., Zejmo M., Zukowski K. <Astron. Astrophys. 625, A139 (2019)> =2019A&A...625A.139M 2019A&A...625A.139M (SIMBAD/NED BibCode)
ADC_Keywords: Solar system ; Minor planets Keywords: minor planets: asteroids - techniques: photometric - radiation mechanisms: thermal Abstract: Earlier work suggests that slowly rotating asteroids should have higher thermal inertias than faster rotators because the heat wave penetrates deeper into the subsurface. However, thermal inertias have been determined mainly for fast rotators due to selection effects in the available photometry used to obtain shape models required for thermophysical modelling (TPM). Our aims are to mitigate these selection effects by producing shape models of slow rotators, to scale them and compute their thermal inertia with TPM, and to verify whether thermal inertia increases with the rotation period. To decrease the bias against slow rotators, we conducted a photometric observing campaign of main-belt asteroids with periods longer than 12h, from multiple stations worldwide, adding in some cases data from WISE and Kepler space telescopes. For spin and shape reconstruction we used the lightcurve inversion method, and to derive thermal inertias we applied a thermophysical model to fit available infrared data from IRAS, AKARI, and WISE. We present new models of 11 slow rotators that provide a good fit to the thermal data. In two cases, the TPM analysis showed a clear preference for one of the two possible mirror solutions. We derived the diameters and albedos of our targets in addition to their thermal inertias, which ranged between 3-3+33 and 45-30+60J/m2/s1/2/K. Together with our previous work, we have analysed 16 slow rotators from our dense survey with sizes between 30 and 150 km. The current sample thermal inertias vary widely, which does not confirm the earlier suggestion that slower rotators have higher thermal inertias. Description: The files contain asteroid brightness and geometry for corresponding epochs. The "*lcs.dat" files were used for obtaining shape models and spin states of the asteroids using multi-apparition data. Individual lightcurves within a file are separated by an empty line, all lightcurves are relative. The files "*obs.dat" contain information on the observing circumstances, observers, and sites of each of the the new lightcurves published within this paper. Individual apparitions are spaced by an empty line. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file 100lcs.dat 112 3479 Asteroid 100 Hekate individual lightcurves 109lcs.dat 112 1570 Asteroid 109 Felicitas individual lightcurves 195lcs.dat 112 1855 Asteroid 195 Eurykleia individual lightcurves 301lcs.dat 112 1786 Asteroid 301 Bavaria individual lightcurves 335lcs.dat 112 2097 Asteroid 335 Roberta individual lightcurves 380lcs.dat 112 1219 Asteroid 380 Fiducia individual lightcurves 468lcs.dat 112 1091 Asteroid 468 Lina individual lightcurves 538lcs.dat 112 2927 Asteroid 538 Friederike individual lightcurves 653lcs.dat 112 1387 Asteroid 653 Berenike individual lightcurves 673lcs.dat 112 1470 Asteroid 673 Edda individual lightcurves 834lcs.dat 112 901 Asteroid 834 Burnhamia individual lightcurves 100obs.dat 91 48 Observing circumstances of asteroid 100 Hekate 109obs.dat 89 52 Observing circumstances of asteroid 109 Felicitas 195obs.dat 89 52 Observing circumstances of asteroid 195 Eurykleia 301obs.dat 91 25 Observing circumstances of asteroid 301 Bavaria 335obs.dat 88 26 Observing circumstances of asteroid 335 Roberta 380obs.dat 88 37 Observing circumstances of asteroid 380 Fiducia 468obs.dat 91 39 Observing circumstances of asteroid 468 Lina 538obs.dat 91 78 Observing circumstances of asteroid 538 Friederike 653obs.dat 91 28 Observing circumstances of asteroid 653 Berenike 673obs.dat 88 34 Observing circumstances of asteroid 673 Edda 834obs.dat 88 32 Observing circumstances of asteroid 834 Burnhamia -------------------------------------------------------------------------------- Byte-by-byte Description of file: *lcs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 15 F14.6 d JD JD epoch corrected for the light-time corresponding to the Earth-asteroid distance 17- 28 E12.6 --- br Relative brightness in intensity units, mean brightness of each lightcurve is unity 30- 42 E13.6 AU Sx x component of the vector from the asteroid to the Sun in J2000 ecliptic Cartesian coordinates 44- 56 E13.6 AU Sy y component of the vector from the asteroid to the Sun in J2000 ecliptic Cartesian coordinates 58- 70 E13.6 AU Sz z component of the vector from the asteroid to the Sun in J2000 ecliptic Cartesian coordinates 72- 84 E13.6 AU Ex x component of the vector from the asteroid to the Earth in J2000 ecliptic Cartesian coordinates 86- 98 E13.6 AU Ey y component of the vector from the asteroid to the Earth in J2000 ecliptic Cartesian coordinates 100-112 E13.6 AU Ez z component of the vector from the asteroid to the Earth in J2000 ecliptic Cartesian coordinates -------------------------------------------------------------------------------- Byte-by-byte Description of file: *obs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 14 A13 "datime" Obs.date Particular observing run observation date (YYYY/MMM/DD.d) 18- 22 F5.1 deg Lambda Ecliptic longitude of the target 26- 29 F4.1 deg Phase Phase angle (Sun-Target-Observer) 32- 35 F4.1 h Dur Duration of the observing run 39- 43 F5.3 mag Sigma ? Photometric scatter 47- 67 A21 --- Observ Observer(s) 70- 91 A22 --- Site Observing site -------------------------------------------------------------------------------- Acknowledgements: Anna Marciniak, am(at)amu.edu.pl
(End) Patricia Vannier [CDS] 24-Apr-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line