J/A+A/626/A83 FeXVII-XXV K lines Plasma environment effects (Deprince+, 2019)
Plasma environment effects on K lines of astrophysical interest.
II. Ionization potentials, K thresholds, radiative rates and Auger widths in
Ne- through He-like iron ions (Fe XVII - Fe XXV).
Deprince J., Bautista M.A., Fritzsche S., Garcia J., Kallman T., Mendoza C.,
Palmeri P., Quinet P.
<Astron. Astrophys. 626, A83 (2019)>
=2019A&A...626A..83D 2019A&A...626A..83D (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics
Keywords: black hole physics - plasmas - atomic data - X-rays: general
Abstract:
In the context of accretion disks around black holes, we estimate
plasma-environment effects on the atomic parameters associated with
the decay of K-vacancy states in highly charged iron ions, namely
FeXVII-FeXXV.
Within the relativistic multiconfiguration Dirac-Fock (MCDF)
framework, the electron-nucleus and electron-electron plasma
screenings are approximated with a time-averaged Debye-Huckel
potential.
Modified ionization potentials, K thresholds, wavelengths, radiative
emission rates and Auger widths are reported for astrophysical plasmas
characterized by electron temperatures and densities respectively in
the ranges 105-107K and 1018-1022cm-3.
We conclude that the high-resolution micro-calorimeters onboard future
X-ray missions such as XRISM and ATHENA are expected to be sensitive
to the lowering of the iron K edge due to the extreme plasma
conditions occurring in accretion disks around compact objects.
Description:
Computed wavelengths, transition probabilities and Auger widths for
three values of the plasma screening parameter (mu) in iron ions from
Fe XVII (Zeff=17) to Fe XXV (Zeff=25) are given in these two tables.
In Table 5 the iron ions are identified by their effective charge
(Zeff) and the transitions by their identification (Trans). For each
transition, the wavelengths and the transition probabilities are given
for mu=0, 0.1 and 0.25a.u.
In Table 6 the iron ions are identified with their effective charge
(Zeff) and the K-vacancy level by their designation (Lev). For each
level, the Auger widths are given for mu=0, 0.1 and 0.25a.u.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table5.dat 98 291 Wavelengths and transition probabilities
table6.dat 56 139 Auger widths
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- Zeff Effective charge
4- 47 A44 --- Trans Transition identification
49- 54 F6.4 0.1nm WL1 Wavelength in Angstroem (mu=0a.u.)
56- 61 F6.4 0.1nm WL2 Wavelength in Angstroem (mu=0.1a.u.)
63- 68 F6.4 0.1nm WL3 Wavelength in Angstroem (mu=0.25a.u.)
70- 78 E9.3 s-1 Ar1 Transition probability (mu=0a.u.)
80- 88 E9.3 s-1 Ar2 Transition probability (mu=0.1a.u.)
90- 98 E9.3 s-1 Ar3 Transition probability (mu=0.25a.u.)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- Zeff Effective charge
4- 26 A23 --- Lev K-vacancy level
28- 36 E9.3 s-1 Aa1 Auger width (mu=0a.u.)
38- 46 E9.3 s-1 Aa2 Auger width (mu=0.1a.u.)
48- 56 E9.3 s-1 Aa3 Auger width (mu=0.25a.u.)
--------------------------------------------------------------------------------
Acknowledgements:
Patrick Palmeri, patrick.palmeri(at)umons.ac.be
References:
Deprince et al., Paper I 2019A&A...624A..74D 2019A&A...624A..74D
(End) Patrick Palmeri [UMONS], Patricia Vannier [CDS] 07-May-2019