J/A+A/628/A49 Spectroscopy of dwarf stars (Mikolaitis+, 2019)
High-resolution spectroscopic study of dwarf stars in the northern sky:
Na to Zn abundances in two fields with radii of 20 degrees.
Mikolaitis S., Drazdauskas A., Stonkute E., Minkeviciute R.,
Tautvaisiene G., Klebonas L., Bagdonas V., Pakstiene E., Janulis R.
<Astron. Astrophys. 628, A49 (2019)>
=2019A&A...628A..49M 2019A&A...628A..49M (SIMBAD/NED BibCode)
ADC_Keywords: Stars, nearby ; Stars, dwarfs ; Abundances ; Spectroscopy
Keywords: Galaxy: disk - Galaxy: structure - Galaxy: abundances -
Galaxy: stellar content - stars: abundance
Abstract:
New space missions, such as NASA TESS or ESA PLATO, will focus on
bright stars, which have been largely ignored by modern large surveys,
especially in the northern sky. Spectroscopic information is of
paramount importance in characterising the stars and analysing planets
possibly orbiting them, and in studying the Galactic disc evolution.
The aim of this work was to analyse all bright (V<8mag) F, G, and K
dwarf stars using high-resolution spectra in the selected sky fields
near the northern celestial pole.
The observations were carried out with the 1.65m diameter telescope
at the Molttai Astronomical Observatory and a fibre-fed
high-resolution spectrograph covering a full visible wavelength range
(4000-8500Å). The atmospheric parameters were derived using the
classical equivalent width approach while the individual chemical
element abundances were determined from spectral synthesis. For both
tasks the one-dimensional plane-parallel LTE MARCS stellar model
atmospheres were applied. Results. We determined the main atmospheric
parameters, kinematic properties, orbital parameters, and stellar ages
for 109 newly observed stars and chemical abundances of 23 chemical
species for 249 F, G, and K dwarf stars observed in the present study
and in our previous study. The [MgI/FeI] ratio was adopted to define
the thin-disc (α-poor) and thick-disc (α-rich) stars in
our sample. We explored the behaviour of 21 chemical species in the
[El/FeI] versus [FeI/H] and [El/FeI] versus age planes, and compared
the results with the latest Galactic chemical evolution models. We
also explored [El/FeI] gradients according to the mean Galactocentric
distances and maximum height above the Galactic plane.
Description:
Based on observations collected with the 1.65m telescope and VUES
spectrograph at the Moletai Astronomical Observatory of Institute of
Theoretical Physics and Astronomy, Vilnius University, for the SPFOT
survey.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablea1.dat 419 249 Results
linelist.dat 14 437 Linelist (Table 1)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 15 A15 --- TYC Target name in Tycho-2 catalogue
17- 25 I9 --- TIC5 ? TESS identifier (tic5)
27- 30 I4 K Teff Effective temperature
32- 34 I3 K e_Teff Error of effective temperature
36- 39 F4.2 [cm/s2] logg Stellar surface gravity
41- 44 F4.2 [cm/s2] e_logg Error of stellar surface gravity
46- 50 F5.2 [-] [Fe/H] Metallicity
52- 55 F4.2 [-] e_[Fe/H] Error of metallicity
57- 60 F4.2 km/s vt Microturbulent velocity
62- 65 F4.2 km/s e_vt Error of microturbulent velocity
67- 72 F6.2 km/s RV Radial velocity
74- 77 F4.2 km/s e_RV Error of radial velocity
79- 83 F5.2 Gyr Age Age of the star
85- 88 F4.2 Gyr e_Age Error on Age
90- 95 F6.2 km/s Ulsr Heliocentric space velocity U
97-100 F4.2 km/s e_Ulsr Error on heliocentric space velocity U
102-107 F6.2 km/s Vlsr Heliocentric space velocity V
109-112 F4.2 km/s e_Vlsr Error on heliocentric space velocity V
114-119 F6.2 km/s Wlsr Heliocentric space velocity W
121-124 F4.2 km/s e_Wlsr Error on heliocentric space velocity W
126-129 F4.2 kpc Dist Distance calculated, 1/plx
131-135 F5.2 kpc RMean Mean Galactocentric distance
137-140 F4.2 kpc e_RMean Error on mean Galactocentric distance
142-145 F4.2 kpc Zmax Maximum distance from Galactic plane
147-150 F4.2 kpc e_Zmax Error on maximum distance from
Galactic plane
152-155 F4.2 --- Ecc Eccentricity of galactic orbit
157-160 F4.2 --- e_Ecc Error on eccentricity of galactic orbit
162-166 F5.2 --- TD/D Thick disk-to-thin disk probability ratio
168-172 F5.2 [-] [NaI/FeI] Abundance [NaI/FeI]
174-177 F4.2 [-] e_[NaI/FeI] Error on NaI abundance
179-183 F5.2 [-] [MgI/FeI] Abundance [MgI/FeI]
185-188 F4.2 [-] e_[MgI/FeI] Error on MgI abundance
190-194 F5.2 [-] [AlI/FeI] Abundance [AlI/FeI]
196-199 F4.2 [-] e_[AlI/FeI] Error on AlI abundance
201-205 F5.2 [-] [SiI/FeI] Abundance [SiI/FeI]
207-210 F4.2 [-] e_[SiI/FeI] Error on SiI abundance
212-216 F5.2 [-] [SiII/FeI] Abundance [SiII/FeI]
218-221 F4.2 [-] e_[SiII/FeI] Error on SiII abundance
223-227 F5.2 [-] [SI/FeI] ? Abundance [SI/FeI]
229-232 F4.2 [-] e_[SI/FeI] ? Error on S1Abundance
234-238 F5.2 [-] [KI/FeI] ? NLTE Abundance [KI/FeI]
240-243 F4.2 [-] e_[KI/FeI] ? Error on KI abundance
245-249 F5.2 [-] [CaI/FeI] Abundance [CaI/FeI]
251-254 F4.2 [-] e_[CaI/FeI] Error on CaI abundance
256-260 F5.2 [-] [CaII/FeI] Abundance [CaII/FeI]
262-265 F4.2 [-] e_[CaII/FeI] Error on CaII abundance
267-271 F5.2 [-] [ScI/FeI] Abundance [ScI/FeI]
273-276 F4.2 [-] e_[ScI/FeI] Error on ScI abundance
278-282 F5.2 [-] [ScII/FeI] Abundance [ScII/FeI]
284-287 F4.2 [-] e_[ScII/FeI] Error on ScII abundance
289-293 F5.2 [-] [TiI/FeI] Abundance [TiI/FeI]
295-298 F4.2 [-] e_[TiI/FeI] Error on TiI abundance
300-304 F5.2 [-] [TiII/FeI] Abundance [TiII/FeI]
306-309 F4.2 [-] e_[TiII/FeI] Error on TiII abundance
311-315 F5.2 [-] [VI/FeI] Abundance [VI/FeI]
317-320 F4.2 [-] e_[VI/FeI] Error on VI abundance
322-326 F5.2 [-] [CrI/FeI] Abundance [CrI/FeI]
328-331 F4.2 [-] e_[CrI/FeI] Error on CrI abundance
333-337 F5.2 [-] [CrII/FeI] Abundance [CrII/FeI]
339-342 F4.2 [-] e_[CrII/FeI] Error on CrII abundance
344-348 F5.2 [-] [MnI/FeI] Abundance [MnI/FeI]
350-353 F4.2 [-] e_[MnI/FeI] Error on MnI abundance
355-359 F5.2 [-] [CoI/FeI] Abundance [CoI/FeI]
361-364 F4.2 [-] e_[CoI/FeI] Error on CoI abundance
366-370 F5.2 [-] [NiI/FeI] Abundance [NiI/FeI]
372-375 F4.2 [-] e_[NiI/FeI] Error on NII abundance
377-381 F5.2 [-] [CuI/FeI] Abundance [CuI/FeI]
383-386 F4.2 [-] e_[CuI/FeI] Error on CuI abundance
388-392 F5.2 [-] [ZnI/FeI] Abundance [ZnI/FeI]
394-397 F4.2 [-] e_[ZnI/FeI] Error on ZnI abundance
399-403 F5.2 [-] [FeI/H] Abundance [FeI/H]
405-408 F4.2 [-] e_[FeI/H] Error on FeI abundance
410-414 F5.2 [-] [FeII/H] Abundance [FeII/H]
416-419 F4.2 [-] e_[FeII/H] Error on FeII abundance
--------------------------------------------------------------------------------
Byte-by-byte Description of file: linelist.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 0.1nm lambda Central wavelength λ (Å)
11- 14 A4 --- El Element and ionisation (e.g. NaI, FeII)
--------------------------------------------------------------------------------
History:
From Sarunas Mikolaitis, sarunas.mikolaitis(at)tfai.vu.lt
Acknowledgements:
This research has made use of the SIMBAD database and NASA
Astrophysics Data System (operated at CDS, Strasbourg, France). This
work has made use of data from the European Space Agency (ESA) mission
Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data
Processing and Analysis Consortium (DPAC,
https://www.cosmos.esa.int/web/ gaia/dpac/consortium). Funding for the
DPAC has been provided by national institutions, in particular the
institutions participating in the Gaia Multilateral Agreement. We are
especially grateful to T. Masseron and B. Plez for providing us with
molecular data. We appreciate that D. Romano, N. Prantzos, C. I.
Johnson, and C. Kobayashi kindly shared their model data. This
research was funded by the grant from the Research Council of
Lithuania (LAT-08/2016).
(End) Sarunas Mikolaitis [ITPA, VU], Patricia Vannier [CDS] 19-Jul-2019