J/A+A/628/A54       Fe, Mg, Ti in Galactic clusters             (Kovalev+, 2019)

NLTE Chemical abundances in Galactic open and globular clusters. Kovalev M., Bergemann M., Ting Y.-S., Rix H.-W. <Astron. Astrophys. 628, A54 (2019)> =2019A&A...628A..54K 2019A&A...628A..54K (SIMBAD/NED BibCode)
ADC_Keywords: Milky Way ; Clusters, globular ; Clusters, open ; Abundances Keywords: stars: abundances: abundances - stars: fundamental parameters - techniques: spectroscopic - open clusters and associations: general - globular clusters: general Abstract: We test the effects of non-local thermodynamic equilibrium (NLTE) on the spectra of FGK-type stars across a wide range of metallicity and to derive abundance of Fe, Mg, and Ti for a sample of Galactic star clusters. We extend the Payne fitting approach to draw on NLTE and LTE spectral models in order to determine stellar parameters and chemical abundances for the Gaia-ESO benchmark stars. We also analyse the medium-resolution Giraffe spectra of 742 stars in 13 open and globular clusters in the Milky Way galaxy. We show that this approach accurately recovers effective temperatures, surface gravities, and abundances of the benchmark stars and clusters members. The differences between NLTE and LTE stellar parameters are small for the metal-rich stars. However, for metal-poor stars [Fe/H]←1, the NLTE estimates of Teff, log(g) and [Fe/H] are higher than LTE estimates, and the systematic offset increases with decreasing metallicity. Our LTE measurements of metallicities and abundances in the Galactic clusters are in a good agreement with the earlier literature studies. For the majority of these clusters, our study yields the first estimates of NLTE abundances of Fe, Mg and Ti. The NLTE [Fe/H] are systematically higher, whereas the average NLTE [Mg/Fe] abundance ratios are ∼0.15dex lower, compared to LTE. All clusters investigated in this work appear homogeneous in Fe and Ti, with the intra-cluster abundance variations of less then 0.1dex. We confirm large dispersions of [Mg/Fe] ratios for NGC 2808, NGC 4833 and M 15. Our results shows that NLTE analysis change the mean abundance ratios in the clusters, but does not influence the intra-cluster abundance dispersions. Combining the Payne fitting approach with NLTE spectral models as input is a powerful tool for a detailed exploration of the large-scale spectroscopic stellar surveys. Description: We investigated the abundances of four elements Fe, Mg, Ti, Mn for 742 stars in 13 open and globular clusters (NGC 3532, NGC 2243, NGC 5927,NGC 104, NGC 1851, NGC 2808, NGC 362, NGC 6752, NGC 1904, NGC 4833, NGC 4372, M 2, M 15) using Gaia-ESO HR10 spectra. The abundances are derived by spectral fitting with the automatic code Payne (Ting, 2018,arxiv:1804.01530), which uses NLTE/LTE spectral models from http://nlte.mpia.de. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea5.dat 151 742 Abundances of four elements Fe, Mg, Ti, Mn for 742 stars in 13 open and globular clusters -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Star Star name (HHMMSSss+DDMMSSs) 18- 25 A8 --- Cluster Cluster name 27- 31 F5.1 --- SNR Signal-to-noise ratio 34- 37 I4 K TeffN NLTE effective temperature 40- 43 I4 K TeffL LTE effective temperature 45- 48 F4.2 [cm2/s] loggN NLTE gravity surface 50- 53 F4.2 [cm2/s] loggL LTE gravity surface 55- 58 F4.2 km/s vmicN NLTE microturbulent velocity 60- 63 F4.2 km/s vmicL LTE microturbulent velocity? 65- 69 F5.2 [-] [Fe/H]N NLTE [Fe/H] abundance 71- 75 F5.2 [-] [Fe/H]L LTE [Fe/H] abundance 77- 80 F4.2 [-] e_[Fe/H]N rms uncertainty on NLTE [Fe/H] abundance 82- 85 F4.2 [-] e_[Fe/H]L rms uncertainty on LTE [Fe/H] abundance 87- 91 F5.2 [-] [Mg/Fe]N NLTE [Mg/H] abundance 93- 97 F5.2 [-] [Mg/Fe]L LTE [Mg/H] abundance 99-102 F4.2 [-] e_[Mg/Fe]N rms uncertainty on NLTE [Mg/H] abundance 104-107 F4.2 [-] e_[Mg/Fe]L rms uncertainty on LTE [Mg/H] abundance 109-113 F5.2 [-] [Ti/Fe]N NLTE [Ti/H] abundance 115-119 F5.2 [-] [Ti/Fe]L LTE [Ti/H] abundance 121-124 F4.2 [-] e_[Ti/Fe]N rms uncertainty on NLTE [Ti/H] abundance 126-129 F4.2 [-] e_[Ti/Fe]L rms uncertainty on LTE [Ti/H] abundance 131-135 F5.2 [-] [Mn/Fe]N NLTE [Mn/H] abundance 137-141 F5.2 [-] [Mn/Fe]L LTE [Mn/H] abundance 143-146 F4.2 [-] e_[Mn/Fe]N rms uncertainty on NLTE [Mn/H] abundance 148-151 F4.2 [-] e_[Mn/Fe]L rms uncertainty on LTE [Mn/H] abundance -------------------------------------------------------------------------------- Acknowledgements: M. Kovalev, kovalev(at)mpia.de
(End) Patricia Vannier [CDS] 02-Jul-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line