J/A+A/630/A58 Full infrared spectrum of molecular hydrogen (Roueff+, 2019)
The full infrared spectrum of molecular hydrogen.
Roueff E., Abgrall H., Czachorowski P., Pachucki K., Puchalski M., Komasa J.
<Astron. Astrophys. 630, A58 (2019)>
=2019A&A...630A..58R 2019A&A...630A..58R (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics
Keywords: molecular data - molecular processes - infrared: general
Abstract:
The high spectral resolution R∼45000 provided by IGRINS
(Immersion Grating INfrared Spectrometer) at MacDonald Observatory and
R∼100000 achieved by CRIRES (CRyogenic high-resolution InfraRed)
Echelle Spectrograph) at VLT challenges the present knowledge of
infrared spectra.
We aim to predict the full infrared spectrum of molecular hydrogen at
a comparable accuracy.
We take advantage of the recent theoretical ab-initio studies on
molecular hydrogen to compute both the electric quadrupole and
magnetic dipole transitions taking place within the ground electronic
molecular state of Hydrogen.
We compute the full infrared spectrum of molecular hydrogen at an
unprecedented accuracy and derive for the first time the emission
probabilities including both electric quadrupole (ΔJ=0, ±2)
and magnetic dipole transitions (ΔJ=0) as well as the total
radiative lifetime of each rovibrational state. Inclusion of magnetic
dipole transitions increases the emission probabilities by factors of
a few for highly excited rotational levels, which occur in the
3-20µ range.
Description:
Table 2 gives a list of all infrared transition of the X H2
rovibrational states. For the transitions energies we use the recent
calculations of Pachucki & Komasa (2018, Phys. Chem. Chem. Phys., 20,
247), which take into account nonadiabatic, relativistic, and QED
perturbation and we indicate the theoretical accuracy for each
transition and for each level dissociation energy. We note that the
transition energy is often obtained with a better theoretical accuracy
than the accuracy of two involved levels. The electric quadrupole and
magnetic dipole emission probabilities are calculated in the adiabatic
approximation with the V(R) potential of Pachucki & Komasa (2014, J.
Chem. Phys., 141, 224103) and with magnetic dipole g(R) and electric
quadrupole moment Q(R) of Pachucki & Komasa (2011, Physical Review A,
83, 032501).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 164 4712 List of all infrared transition of the X H2
rovibrational states
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
2- 3 I2 --- vu Upper state vibrational quantum number
5- 6 I2 --- Ju Upper state rotational quantum number
8- 9 I2 --- vl Lower state vibrational quantum number
11- 12 I2 --- Jl Lower state rotational quantum number
14- 29 F16.6 cm-1 sigma Transition wave-number, σ
33- 39 E7.1 cm-1 Dsigma Transition wave-number accuracy, Δσ
40- 56 F17.9 um lambda Transition wavelength, λ
60- 66 E7.1 um Dlambda Transition wavelength accuracy, Δλ
71- 79 E9.3 s-1 Aqua Electric quadrupole transition Einstein
coefficient Aqua(vu,Ju --> vl,Jl)
84- 92 E9.3 s-1 Ama Magnetic dipole transition Einstein coefficient
Ama(vu,Ju --> vl,Jl)
97-105 E9.3 s-1 A Full radiative transition emission probability
Einstein coefficient
A(vu,Ju --> vl,Jl) =
Aqua(vu,Ju --> vl,Jl) + Ama(vu,Ju --> vl,Jl)
110-118 E9.3 s-1 Atot Total level emission probability of the upper
level
Atot(vu,Ju) = {Sum}(vl,Jl) A(vu,Ju --> vl,Jl)
121-136 F16.6 cm-1 Eu Upper level energy (origin is the H_2
dissociation limit)
141-147 E7.1 cm-1 DEu Upper level energy accuracy, ΔEu
149-159 F11.1 K Tu Upper level term energy (computed from (0,0)
level with a dissociation energy
of 36118.0695cm-1)
162-164 I3 ---- gu Upper level statistical weight (1)
--------------------------------------------------------------------------------
Note (1): upper level statistical weight gu = gI (2Ju+1).
gI = 1 for even values of Ju. gI = 3 for odd values of Ju.
--------------------------------------------------------------------------------
Acknowledgements:
Eveline Roueff, evelyne.roueff(at)obspm.fr
(End) Patricia Vannier [CDS] 20-Aug-2019