J/A+A/631/A169 HAT-P-1b transit light curves (Todorov+, 2019)
Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b.
Todorov K.O., Desert J.-M., Huitson C.M., Bean J.L., Panwar V.,
de Matos F., Stevenson K.B., Fortney J.J., Bergmann M.
<Astron. Astrophys. 631, A169 (2019)>
=2019A&A...631A.169T 2019A&A...631A.169T (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Photometry
Keywords: planets and satellites: atmospheres -
planets and satellites: individual (HAT-P-1b) -
techniques: spectroscopic
Abstract:
Time-series spectrophotometric studies of exoplanets during transit
using ground-based facilities are a promising approach to characterize
their atmospheric compositions. We aim to investigate the transit
spectrum of the hot Jupiter HAT-P-1b. We compare our results to those
obtained at similar wavelengths by previous space-based observations.
We observed two transits of HAT-P-1b with the Gemini Multi-Object
Spectrograph (GMOS) instrument on the Gemini North telescope using two
instrument modes covering the 320-800nm and 520-950nm wavelength
ranges. We used time-series spectrophotometry to construct transit
light curves in individual wavelength bins and measure the transit
depths in each bin. We accounted for systematic effects. We addressed
potential photometric variability due to magnetic spots in the
planet's host star with long-term photometric monitoring. We find that
the resulting transit spectrum is consistent with previous Hubble
Space Telescope (HST) observations. We compare our observations to
transit spectroscopy models that marginally favor a clear atmosphere.
However, the observations are also consistent with a flat spectrum,
indicating high-altitude clouds. We do not detect the Na resonance
absorption line (589nm), and our observations do not have sufficient
precision to study the resonance line of K at 770nm. We show that
even a single Gemini/GMOS transit can provide constraining power on
the properties of the atmosphere of HAT-P-1b to a level comparable to
that of HST transit studies in the optical when the observing
conditions and target and reference star combination are suitable. Our
520-950nm observations reach a precision comparable to that of HST
transit spectra in a similar wavelength range of the same hot Jupiter,
HAT-P-1b. However, our GMOS transit between 320-800nm suffers from
strong systematic effects and yields larger uncertainties.
Description:
We observed two primary transits of HAT-P-1b using the Gemini
Multi-Object Spectrograph (GMOS-N) instrument on the Gemini North
telescope (Maunakea, Hawaii) on 2012 November 12 and on 2015 November
02.
Objects:
---------------------------------------------------
RA (2000) DE Designation(s)
---------------------------------------------------
22 57 46.84 +38 40 30.4 HAT-P-1b = HAT-P-1b
---------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table4b.dat 33 28 HAT-P-1b transit spectrum (R150)
table4r.dat 33 11 HAT-P-1b transit spectrum (B600)
lcr150.dat 284 726 HAT-P-1b wavelength dependent light curves (R150)
lcb600.dat 607 318 HAT-P-1b wavelength dependent light curves (B600)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4b.dat table4r.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 F5.1 nm lambadStart Shortest wavelength in bin
7- 11 F5.1 nm lambdaEnd Longest wavelength in bin
13- 19 F7.5 --- Rp/R* Planet to star ratio of radii
21- 27 F7.5 --- e_Rp/R* Uncertainty on Rp/R*
29- 31 F3.1 --- FNoise Observed noise / photon noise fraction
33 I1 --- Qual [0/1] Quality flag
(1: good; 0: unreliable)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: lcr150.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 F18.16 --- Phase Orbital phase
20- 37 F18.16 pix PSFwidth PSF width
39- 56 F18.16 --- Airmass Airmass
58- 75 F18.16 --- FWLC White light flux (raw, normalized)
77- 94 F18.16 --- F1 569.388819517581nm flux (raw, normalized)
96-113 F18.16 --- F2 605.2194944860992nm flux (raw, normalized)
115-132 F18.16 --- F3 641.0501694546174nm flux (raw, normalized)
134-151 F18.16 --- F4 676.8808444231355nm flux (raw, normalized)
153-170 F18.16 --- F5 712.711519391654nm flux (raw, normalized)
172-189 F18.16 --- F6 748.5421943601721nm flux (raw, normalized)
191-208 F18.16 --- F7 784.3728693286902nm flux (raw, normalized)
210-227 F18.16 --- F8 820.2035442972085nm flux (raw, normalized)
229-246 F18.16 --- F9 856.0342192657266nm flux (raw, normalized)
248-265 F18.16 --- F10 891.864894234245nm flux (raw, normalized)
267-284 F18.16 --- F11 927.6955692027632nm flux (raw, normalized)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: lcb600.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 F18.16 --- Phase Orbital phase
20- 37 F18.16 pix PSFwidth PSF PSFwidth
39- 56 F18.16 --- Airmass Airmass
58- 75 F18.16 --- FWLC White light flux (raw, normalized)
77- 94 F18.16 --- F1 335.675774128402nm flux (raw, normalized)
96-113 F18.16 --- F2 351.39422115846094nm flux (raw, normalized)
115-132 F18.16 --- F3 367.11266818851993nm flux (raw, normalized)
134-151 F18.16 --- F4 382.83111521857876nm flux (raw, normalized)
153-170 F18.16 --- F5 398.5495622486377nm flux (raw, normalized)
172-189 F18.16 --- F6 414.2680092786965nm flux (raw, normalized)
191-208 F18.16 --- F7 429.98645630875546nm flux (raw, normalized)
210-227 F18.16 --- F8 445.70490333881435nm flux (raw, normalized)
229-246 F18.16 --- F9 461.42335036887334nm flux (raw, normalized)
248-265 F18.16 --- F10 477.14179739893217nm flux (raw, normalized)
267-284 F18.16 --- F11 492.86024442899105nm flux (raw, normalized)
286-303 F18.16 --- F12 508.57869145905005nm flux (raw, normalized)
305-322 F18.16 --- F13 524.297138489109nm flux (raw, normalized)
324-341 F18.16 --- F14 540.0155855191679nm flux (raw, normalized)
343-360 F18.16 --- F15 555.7340325492268nm flux (raw, normalized)
362-379 F18.16 --- F16 571.4524795792856nm flux (raw, normalized)
381-398 F18.16 --- F17 587.1709266093446nm flux (raw, normalized)
400-417 F18.16 --- F18 602.8893736394036nm flux (raw, normalized)
419-436 F18.16 --- F19 618.6078206694624nm flux (raw, normalized)
438-455 F18.16 --- F20 634.3262676995213nm flux (raw, normalized)
457-474 F18.16 --- F21 650.0447147295802nm flux (raw, normalized)
476-493 F18.16 --- F22 665.7631617596392nm flux (raw, normalized)
495-512 F18.16 --- F23 681.4816087896982nm flux (raw, normalized)
514-531 F18.16 --- F24 697.200055819757nm flux (raw, normalized)
533-550 F18.16 --- F25 712.9185028498159nm flux (raw, normalized)
552-569 F18.16 --- F26 728.6369498798747nm flux (raw, normalized)
571-588 F18.16 --- F27 744.3553969099337nm flux (raw, normalized)
590-607 F18.16 --- F28 760.0738439399927nm flux (raw, normalized)
--------------------------------------------------------------------------------
Acknowledgements:
Kamen Todorov, ktodorov(at)uva.nl
(End) Patricia Vannier [CDS] 08-Oct-2019