J/A+A/631/A34       KELT-9b radial velocity curve                  (Borsa+ 2019)

The GAPS Programme with HARPS-N at TNG. XIX. Atmospheric Rossiter-McLaughlin effect and improved parameters of KELT-9b. Borsa F., Rainer M., Bonomo A. S., Barbato D., Fossati L., Malavolta L., Nascimbeni V., Lanza A. F., Esposito M., Affer L., Andreuzzi G., Benatti S., Biazzo K., Bignamini A., Brogi M., Carleo I., Claudi R., Cosentino R., Covino E., Damasso M. Desidera S., Garrido Rubio A., Giacobbe P., Gonzalez-Alvarez E., Harutyunyan A., Knapic C., Leto G., Ligi R., Maggio A., Maldonado J., Mancini L., Fiorenzano A.F.M., Masiero S., Micela G., Molinari E., Pagano I., Pedani M., Piotto G., Pino L., Poretti E., Scandariato G., Smareglia R., Sozzetti A. <Astron. Astrophys. 631, A34 (2019)> =2019A&A...631A..34B 2019A&A...631A..34B (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Spectroscopy; Radial velocities Keywords: planetary systems - techniques: spectroscopic - techniques: radial velocities - planets and satellites: atmospheres - stars: individual: KELT-9 Abstract: In the framework of the GAPS project, we observed the planet-hosting star KELT-9 (A-type star, vsini∼110km/s) with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. In this work we analyse the spectra and the extracted radial velocities, to constrain the physical parameters of the system and to detect the planetary atmosphere of KELT-9b. We extracted from the high-resolution optical spectra the mean stellar line profiles with an analysis based on the Least Square Deconvolution technique. Then, we computed the stellar radial velocities with a method optimized for fast rotators, by fitting the mean stellar line profile with a purely rotational profile instead of using a Gaussian function. The new spectra and analysis led us to update the orbital and physical parameters of the system, improving in particular the value of the planetary mass to Mp=2.88±0.35MJup. We discovered an anomalous in-transit radial velocity deviation from the theoretical Rossiter- McLaughlin effect solution, calculated from the projected spin-orbit angle λ=-85.78±0.46 degrees measured with Doppler tomography. We prove that this deviation is caused by the planetary atmosphere of KELT-9b, thus we name this effect Atmospheric Rossiter-McLaughlin effect. By analysing the magnitude of the radial velocity anomaly, we obtained information on the extension of the planetary atmosphere as weighted by the model used to retrieve the stellar mean line profiles, which is up to 1.22±0.02Rp. The Atmospheric Rossiter-McLaughlin effect will be observable for other exo- planets whose atmosphere has non-negligible correlation with the stellar mask used to retrieve the radial velocities, in particular ultra-hot Jupiters with iron in their atmosphere. The duration and amplitude of the effect will depend not only on the extension of the atmosphere, but also on the in-transit planetary radial velocities and on the projected rotational velocity of the parent star. Description: HARPS-N radial velocities of KELT-9. Objects: ------------------------------------------------- RA (2000) DE Designation(s) ------------------------------------------------- 20 31 26.35 +39 56 19.8 KELT-9 = HD 195689 ------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 26 373 HARPS-N radial velocities of KELT-9 -------------------------------------------------------------------------------- See also: J/A+A/627/A165 : KELT-9b atmos. model transmission spectra (Hoeijmakers+, 2019) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 F10.5 d BJD Time of observation (BJD-2450000) 13- 19 F7.3 km/s RV Radial velocity 22- 26 F5.3 km/s e_RV Radial velocity error -------------------------------------------------------------------------------- Acknowledgements: Francesco Borsa, francesco.borsaatinaf.it References: Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28 Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111 Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15 Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64 Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136 Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135 Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118 Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90 Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E Bonomo et al., Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107 Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G Mancini et al., Paper XVI 2018A&A...613A..41M 2018A&A...613A..41M, Cat. J/A+A/613/A41 Lanza et al., Paper XVII 2018A&A...616A.155L 2018A&A...616A.155L, Cat. J/A+A/616/A155 Barbato et al., Paper XVIII 2019A&A...621A.110B 2019A&A...621A.110B, Cat. J/A+A/621/A110
(End) Francesco Borsa [INAF OA Brera, Italy], Patricia Vannier [CDS] 01-Aug-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line