J/A+A/631/A34 KELT-9b radial velocity curve (Borsa+ 2019)
The GAPS Programme with HARPS-N at TNG.
XIX. Atmospheric Rossiter-McLaughlin effect and improved parameters of KELT-9b.
Borsa F., Rainer M., Bonomo A. S., Barbato D., Fossati L., Malavolta L.,
Nascimbeni V., Lanza A. F., Esposito M., Affer L., Andreuzzi G., Benatti S.,
Biazzo K., Bignamini A., Brogi M., Carleo I., Claudi R., Cosentino R.,
Covino E., Damasso M. Desidera S., Garrido Rubio A., Giacobbe P.,
Gonzalez-Alvarez E., Harutyunyan A., Knapic C., Leto G., Ligi R.,
Maggio A., Maldonado J., Mancini L., Fiorenzano A.F.M., Masiero S.,
Micela G., Molinari E., Pagano I., Pedani M., Piotto G., Pino L.,
Poretti E., Scandariato G., Smareglia R., Sozzetti A.
<Astron. Astrophys. 631, A34 (2019)>
=2019A&A...631A..34B 2019A&A...631A..34B (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Spectroscopy;
Radial velocities
Keywords: planetary systems - techniques: spectroscopic -
techniques: radial velocities - planets and satellites: atmospheres -
stars: individual: KELT-9
Abstract:
In the framework of the GAPS project, we observed the planet-hosting
star KELT-9 (A-type star, vsini∼110km/s) with the HARPS-N spectrograph
at the Telescopio Nazionale Galileo. In this work we analyse the
spectra and the extracted radial velocities, to constrain the physical
parameters of the system and to detect the planetary atmosphere of
KELT-9b.
We extracted from the high-resolution optical spectra the mean stellar
line profiles with an analysis based on the Least Square Deconvolution
technique. Then, we computed the stellar radial velocities with a
method optimized for fast rotators, by fitting the mean stellar line
profile with a purely rotational profile instead of using a Gaussian
function.
The new spectra and analysis led us to update the orbital and physical
parameters of the system, improving in particular the value of the
planetary mass to Mp=2.88±0.35MJup. We discovered an anomalous
in-transit radial velocity deviation from the theoretical Rossiter-
McLaughlin effect solution, calculated from the projected spin-orbit
angle λ=-85.78±0.46 degrees measured with Doppler
tomography. We prove that this deviation is caused by the planetary
atmosphere of KELT-9b, thus we name this effect Atmospheric
Rossiter-McLaughlin effect. By analysing the magnitude of the radial
velocity anomaly, we obtained information on the extension of the
planetary atmosphere as weighted by the model used to retrieve the
stellar mean line profiles, which is up to 1.22±0.02Rp.
The Atmospheric Rossiter-McLaughlin effect will be observable for
other exo- planets whose atmosphere has non-negligible correlation
with the stellar mask used to retrieve the radial velocities, in
particular ultra-hot Jupiters with iron in their atmosphere. The
duration and amplitude of the effect will depend not only on the
extension of the atmosphere, but also on the in-transit planetary
radial velocities and on the projected rotational velocity of the
parent star.
Description:
HARPS-N radial velocities of KELT-9.
Objects:
-------------------------------------------------
RA (2000) DE Designation(s)
-------------------------------------------------
20 31 26.35 +39 56 19.8 KELT-9 = HD 195689
-------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 26 373 HARPS-N radial velocities of KELT-9
--------------------------------------------------------------------------------
See also:
J/A+A/627/A165 : KELT-9b atmos. model transmission spectra (Hoeijmakers+, 2019)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 F10.5 d BJD Time of observation (BJD-2450000)
13- 19 F7.3 km/s RV Radial velocity
22- 26 F5.3 km/s e_RV Radial velocity error
--------------------------------------------------------------------------------
Acknowledgements:
Francesco Borsa, francesco.borsaatinaf.it
References:
Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28
Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D
Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E
Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D
Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111
Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15
Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64
Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136
Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D
Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135
Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118
Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90
Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E
Bonomo et al., Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107
Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G
Mancini et al., Paper XVI 2018A&A...613A..41M 2018A&A...613A..41M, Cat. J/A+A/613/A41
Lanza et al., Paper XVII 2018A&A...616A.155L 2018A&A...616A.155L, Cat. J/A+A/616/A155
Barbato et al., Paper XVIII 2019A&A...621A.110B 2019A&A...621A.110B, Cat. J/A+A/621/A110
(End) Francesco Borsa [INAF OA Brera, Italy], Patricia Vannier [CDS] 01-Aug-2019