J/A+A/631/A77 Low-mass stellar models and isochrones (Amard+, 2019)
First grids of low-mass stellar models and isochrones with self-consistent
treatment of rotation.
From 0.2 to 1.5 M☉ at seven metallicities from PMS to TAMS.
Amard L., Palacios A., Charbonnel C., Gallet F., Georgy C., Lagarde N.,
Siess L.
<Astron. Astrophys. 631, A77 (2019)>
=2019A&A...631A..77A 2019A&A...631A..77A (SIMBAD/NED BibCode)
ADC_Keywords: Models, evolutionary; Isochrones; Stars, pre-main sequence
Keywords: stars: evolution - low-mass - pre-main sequence - stars: rotation
Abstract:
We present an extended grid of state-of-the art stellar models for
low-mass stars including updated physics (nuclear reaction rates,
surface boundary condition, mass-loss rate, angular momentum
transport, rotation-induced mixing, and torque prescriptions). We
evaluate the impact of wind braking, realistic atmospheric treatment,
rotation, and rotation-induced mixing on the structural and rotational
evolution from the pre-main sequence (PMS) to the turn-off.
Using the STAREVOL code, we provide an updated PMS grid. We computed
stellar models for seven different metallicities, from [Fe/H]=-1dex to
[Fe/H]=+0.3dex with a solar composition corresponding to Z=0.0134. The
initial stellar mass ranges from 0.2 to 1.5M☉ with extra grid
refinement around one solar mass. We also provide rotating models for
three different initial rotation rates (slow, median, and fast) with
prescriptions for the wind braking and disc-coupling timescale
calibrated on observed properties of young open clusters. The
rotational mixing includes the most recent description of the
turbulence anisotropy in stably stratified regions.
The overall behaviour of our models at solar metallicity, and their
constitutive physics, are validated through a detailed comparison with
a variety of distributed evolutionary tracks. The main differences
arise from the choice of surface boundary conditions and initial solar
composition. The models including rotation with our prescription for
angular momentum extraction and self-consistent formalism for angular
momentum transport are able to reproduce the rotation period
distribution observed in young open clusters over a wide range of mass
values. These models are publicly available and can be used to analyse
data coming from present and forthcoming asteroseismic and
spectroscopic surveys such as Gaia, TESS, and PLATO.The overall
behaviour of our models at solar metallicity, and their constitutive
physics, are validated through a detailed comparison with a variety of
distributed evolutionary tracks. The main differences arise from the
choice of surface boundary conditions and initial solar composition.
The models including rotation with our prescription for angular
momentum extraction and self-consistent formalism for angular momentum
transport are able to reproduce the rotation period distribution
observed in young open clusters over a wide range of mass values.
These models are publicly available and can be used to analyse data
coming from present and forthcoming asteroseismic and spectroscopic
surveys such as Gaia, TESS, and PLATO.
Description:
We present the evolution tracks for 392 low-mass stellar models. They
cover 7 metallicities, 14 masses and 4 rotations rates. We computed 42
isochrones for each rotation rates at each metallicities. All the
computed values are distributed, including the color conversion to the
Johnson-Cousin and GAIA photometric system following Worthey & Lee
(2011, Cat. J/ApJS/193/1) and Evans et al. (2018A&A...616A...4E 2018A&A...616A...4E),
respectively. CC and CE stand for convective core and convective
envelope.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
list.dat 67 1568 List of all the tracks and isochrone files
tracks/* . 392 *Evolution track of a model of mass (M), a
metallicity (Z), and an initial rotation rate (V)
iso/* . 1176 *Isochrones for each (Z) and (V) at ages (lgT)
--------------------------------------------------------------------------------
Note on tracks/* : File names as M00npn0ZnnVnn.dat, where
M00npn is the mass, (M001p5 ⟹ M=1.5Msun),
Znn is the metallicity (Z26 ⟹ Z=0.0256, or Z02 ⟹ Z=0.0022), and
Vnn is the initial rotation rate (V00 for standard,
V20 for slow rotators, V40 for median rotators and V60 for fast rotators)
Note on iso/* : File names as IsochrZn.nnnnVinin.nnn_tnn.nnn.dat, where
Zn.nnnn is the metallicity (Z0.026 ⟹ Z=0.0256),
Vinin.nn is the initial rotation rate (Vini0.60 for fast rotators) and
tnn.nnn is the logAge (t09.600 ⟹ logT=9.6 ⟹ Age = 109.6).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: list.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- --- [M]
2- 5 F4.2 Msun Mini [0.20/1.50]? Initial mass (for tracks only) (1)
7 A1 --- --- [Z]
8- 13 F6.4 --- Zini [0.0002/0.0260] Initial metallicity (2)
15 A1 --- --- [V]
16- 19 F4.2 --- Vini [0.00/0.60] Initial rotation rate (3)
21 A1 --- --- [t]
22- 27 F6.3 [yr] logT [6.0/10.1]? Initial age (for isochrones only) (4)
29- 67 A39 --- FileName Name of the file
--------------------------------------------------------------------------------
Note (1): Initial masses from 0.2 to 1.5, by 0.1 steps.
Note (2): Initial metallicities are
0.0020, 0.0060, 0.0080, 0.0100, 0.0130, 0.0190 and 0.0260.
Note (3): Initial rotation rates:
0.00 = standard
0.20 = slow rotators
0.40 = median rotators
0.60 = fast rotators
Note (4): Initial log(age) from 6.0 to 10.1, by 0.1 steps.
--------------------------------------------------------------------------------
Byte-by-byte Description of file (#): tracks/*
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- Line Line in the file (line)
7- 22 E16.10 yr Time Age (time)
24- 32 F9.6 [K] logTeff log10 of Effective temperature (logTeff)
34- 42 F9.6 [Lsun] logL log10 of Surface luminosity (logL)
44- 52 F9.6 [Lsun] logLgrav log10 of Gravothermal luminosity
(logLgrav)
57- 66 F10.8 Msun M Mass (M)
70- 78 F9.5 Rsun R Photospheric radius (R)
80- 84 F5.2 [cm/s2] logg log10 effective gravity (logg)
87- 95 E9.3 g/cm3 rhophot Photospheric density (rho_phot)
97- 106 F10.6 [Ms/yr] logMdot Mass-loss rate (logMdot)
109- 116 F8.6 [K] logTc log10 of central temperature (logTc)
118- 126 F9.6 [10-7J/cm3] logPc log10 of central pressure, in erg/cm3
(logPc)
128- 136 F9.6 [g/cm3] logrhoc log10 of central density (logrhoc)
138- 146 F9.6 [K] logTmax log10 of maximal temperature (logTmax)
148- 156 F9.6 Msun MrTmax Mass coordinate of Tmax (Mr_Tmax)
158- 166 F9.6 [g/cm3] logrhomax log10 of maximal density (logrhomax)
168- 178 E11.4 10-7J/g/s epsnucl Nuclear energy production rate,
in erg/g/s (eps_nucl)
180- 190 E11.4 10-7J/g/s epsgrav Gravothermal energy production rate,
in erg/g/s (eps_grav)
192- 202 E11.4 10-7J/g/s epsnu Plasma neutrino energy loss rate,
in erg/g/s (eps_nu)
205- 213 F9.7 Msun MrbCE Mass coordinate of the base of CE
(MrbCE)
216- 224 E9.3 --- normRbCE Normalised radius of the base of CE
(normRbCE)
227- 233 F7.5 [K] logTb log10 of Temp. at the base of CE
(logT_b)
235- 242 F8.5 [g/cm3] logrhob log10 of density at the base of CE
(logrho_b)
245- 253 F9.7 Msun MrtCC Mass coordinate of the top of CC
(MrtCC)
256- 264 E9.3 --- normRtCC Normalised radius of the top of CC
(normRtCC)
266- 273 F8.5 [K] logTt log10 of Temp. at the top of CC (logT_t)
275- 282 F8.5 [g/cm3] logrhot log10 of density at the top of CC
(logrho_t)
285- 294 E10.4 yr taumax Maximal turnover timescale in the CE
(tau_max)
296- 306 E11.4 --- Romax Corresponding Rossby number (Ro_max)
308- 318 E11.4 yr taug Integrated turnover timescale over CE
(tau_g)
321- 330 E10.4 --- Rog Corresponding Rossby number (Ro_g)
333- 342 E10.4 yr tauHp2 Turnover timescale at Hp/2 above CE bot.
(tau_Hp2)
345- 354 E10.4 --- RoHp2 Corresponding Rossby number (Ro_Hp2)
357- 366 E10.4 yr tauHp Turnover timescale at Hp above CE bot.
(tau_Hp)
369- 378 E10.4 --- RoHp Corresponding Rossby number (Ro_Hp)
381- 390 E10.4 yr tauR2 Turnover timescale at mid CE in radius
(tau_R2)
393- 402 E10.4 --- RoR2 Corresponding Rossby number (Ro_R2)
405- 414 E10.4 yr tauM2 Turnover timescale at mid CE in mass
(tau_M2)
417- 426 E10.4 --- RoM2 Corresponding Rossby number (Ro_M2)
429- 438 E10.4 yr taumaxc Maximal turnover timescale in the CC
(taumaxc)
441- 450 E10.4 --- Romaxc Corresponding Rossby number (Romaxc)
453- 462 E10.4 yr taugc Integrated turnover timescale over CC
(taugc)
465- 474 E10.4 --- Rogc Corresponding Rossby number (Rogc)
477- 486 E10.4 yr tauHp2c Turnover timescale at Hp/2 below CC top
(tauHp2c)
489- 498 E10.4 --- RoHp2c Corresponding Rossby number (RoHp2c)
501- 510 E10.4 yr tauHpc Turnover timescale at Hp below CC top
(tauHpc)
513- 522 E10.4 --- RoHpc Corresponding Rossby number (RoHpc)
525- 534 E10.4 yr tauR2c Turnover timescale at mid CC in radius
(tauR2c)
537- 546 E10.4 --- RoR2c Corresponding Rossby number (RoR2c)
549- 558 E10.4 yr tauM2c Turnover timescale at mid CC in mass
(tauM2c)
561- 570 E10.4 --- RoM2c Corresponding Rossby number (RoM2c)
573- 582 E10.4 yr k2conv Tot reduced moment of inertia of the CE
(k2_conv)
585- 594 E10.4 --- k2rad Tot reduced moment of inertia below CE
(k2_rad)
597- 606 E10.4 rad/s Omegas Surface angular velocity (Omega_s)
609- 618 E10.4 rad/s Omegac Mean angular velocity of radiative zone
(Omega_c)
621- 628 E8.2 km/s Vsurf Surface rotation velocity (Vsurf)
631- 640 E10.4 d Prot Rotation period (Prot)
643- 650 E8.2 g.cm2/s Jact Total specific Ang. momentum of the star
(J_act)
653- 660 E8.2 g.cm2/s Jcore Specific AM of the core (J_core) (G2)
663- 672 E10.4 --- OOc Ratio of the angular and critical veloc.
(OOc)
675- 682 E8.2 km/s Vcrit Break-up surface velocity (Vcrit)
684- 694 E11.4 g.cm2/s2 torque Total AM variation due to stellar winds
(torque)
697- 704 E8.2 G Bequi Magnetic field assuming equipartition
(B_equi) (G3)
706- 716 E11.4 muHz Dnu Large separation from asympt. relation
(D_nu)
718- 728 E11.4 muHz Dnuech Large separation from scaling relation
(Dnuech)
730- 740 E11.4 --- Dnuerr relative error on large separation
(Dnuerr)
742- 752 E11.4 muHz numax Frequency with maximum amplitude (nu_max)
754- 764 E11.4 s DPiasym Asymptotic period spacing of g-modes
(DPi_asym.)
766- 776 E11.4 s Racctot Total acoustic radius (Racctot)
778- 788 E11.4 s RaccBCE Acoustic radius at the base of CE
(RaccBCE)
790- 800 E11.4 s RaccHe Acoustic radius at the He 2nd ionisation
(RaccHe)
803- 809 F7.4 mag Mbol Bolometric magnitude (Mbol)
812- 818 F7.4 mag BC Bolometric corrections (BC)
821- 827 F7.4 mag U-B U-B colour index (U-B)
830- 836 F7.4 mag B-V B-V colour index (B-V)
839- 845 F7.4 mag V-R V-R colour index (V-R)
848- 854 F7.4 mag V-I V-I colour index (V-I)
857- 863 F7.4 mag J-K J-K colour index (J-K)
866- 872 F7.4 mag H-K H-K colour index (H-K)
875- 881 F7.4 mag V-K V-K colour index (V-K)
884- 890 F7.4 mag G-V G-V colour index (G-V)
893- 899 F7.4 mag Gbp-V Gbp-V colour index (Gbp-V)
902- 908 F7.4 mag Grp-V Grp-V colour index (Grp-V)
911- 917 F7.4 mag UMAG U absolute magnitude (M_U)
920- 926 F7.4 mag BMAG B absolute magnitude (M_B)
929- 935 F7.4 mag VMAG V absolute magnitude (M_V)
938- 944 F7.4 mag RMAG R absolute magnitude (M_R)
947- 953 F7.4 mag IMAG I absolute magnitude (M_I)
956- 962 F7.4 mag HMAG H absolute magnitude (M_H)
965- 971 F7.4 mag JMAG J absolute magnitude (M_J)
974- 980 F7.4 mag KMAG K absolute magnitude (M_K)
983- 989 F7.4 mag GMAG G absolute magnitude (M_G)
992- 998 F7.4 mag GbpMAG Gbp absolute magnitude (M_Gbp)
1001-1007 F7.4 mag GrpMAG Grp absolute magnitude (M_Grp)
1010-1019 E10.4 --- H1s Surface abundance of H (H1s) (G4)
1022-1031 E10.4 --- H2s Surface abundance of Deuterium (H2s) (G4)
1034-1043 E10.4 --- He3s Surface abundance of 3He (He3s) (G4)
1046-1055 E10.4 --- He4s Surface abundance of 4He (He4s) (G4)
1058-1067 E10.4 --- Li6s Surface abundance of 6Li (Li6s) (G4)
1070-1079 E10.4 --- Li7s Surface abundance of 7Li (Li7s) (G4)
1082-1091 E10.4 --- Be7s Surface abundance of 7Be (Be7s) (G4)
1094-1103 E10.4 --- Be9s Surface abundance of 9Be (Be9s) (G4)
1106-1115 E10.4 --- B10s Surface abundance of 10B (B10s) (G4)
1118-1127 E10.4 --- B11s Surface abundance of 11B (B11s) (G4)
1130-1139 E10.4 --- C12s Surface abundance of 12C (C12s) (G4)
1142-1151 E10.4 --- C13s Surface abundance of 13C (C13s) (G4)
1154-1163 E10.4 --- C14s Surface abundance of 14C (C14s) (G4)
1166-1175 E10.4 --- N14s Surface abundance of 14N (N14s) (G4)
1178-1187 E10.4 --- N15s Surface abundance of 15N (N15s) (G4)
1190-1199 E10.4 --- O16s Surface abundance of 16O (O16s) (G4)
1202-1211 E10.4 --- O17s Surface abundance of 17O (O17s) (G4)
1214-1223 E10.4 --- O18s Surface abundance of 18O (O18s) (G4)
1226-1235 E10.4 --- F19s Surface abundance of 19F (F19s) (G4)
1238-1247 E10.4 --- Ne20s Surface abundance of 20Ne (Ne20s) (G4)
1250-1259 E10.4 --- Ne21s Surface abundance of 21Ne (Ne21s) (G4)
1262-1271 E10.4 --- Ne22s Surface abundance of 22Ne (Ne22s) (G4)
1274-1283 E10.4 --- Na23s Surface abundance of 23Na (Na23s) (G4)
1286-1295 E10.4 --- Mg24s Surface abundance of 24Mg (Mg24s) (G4)
1298-1307 E10.4 --- Mg25s Surface abundance of 25Mg (Mg25s) (G4)
1310-1319 E10.4 --- Mg26s Surface abundance of 26Mg (Mg26s) (G4)
1322-1331 E10.4 --- Al26s Surface abundance of 26Al (Al26s) (G4)
1334-1343 E10.4 --- Al27s Surface abundance of 27Al (Al27s) (G4)
1346-1355 E10.4 --- Si28s Surface abundance of 28Si (Si28s) (G4)
1358-1367 E10.4 --- H1c Central abundance of H (H1c) (G4)
1370-1379 E10.4 --- H2c Central abundance of Deuterium (H2c) (G4)
1382-1391 E10.4 --- He3c Central abundance of 3He (He3c) (G4)
1394-1403 E10.4 --- He4c Central abundance of 4He (He4c) (G4)
1406-1415 E10.4 --- C12c Central abundance of 12C (C12c) (G4)
1418-1427 E10.4 --- C13c Central abundance of 13C (C13c) (G4)
1430-1439 E10.4 --- C14c Central abundance of 14C (C14c) (G4)
1442-1451 E10.4 --- N14c Central abundance of 14N (N14c) (G4)
1454-1463 E10.4 --- N15c Central abundance of 15N (N15c) (G4)
1466-1475 E10.4 --- O16c Central abundance of 16O (O16c) (G4)
1478-1487 E10.4 --- O17c Central abundance of 17O (O17c) (G4)
1490-1499 E10.4 --- O18c Central abundance of 18O (O18c) (G4)
1502-1511 E10.4 --- F19c Central abundance of 19F (F19c) (G4)
1514-1523 E10.4 --- Ne20c Central abundance of 20Ne (Ne20c) (G4)
1526-1535 E10.4 --- Ne21c Central abundance of 21Ne (Ne21c) (G4)
1538-1547 E10.4 --- Ne22c Central abundance of 22Ne (Ne22c) (G4)
1550-1559 E10.4 --- Na23c Central abundance of 23Na (Na23c) (G4)
1562-1571 E10.4 --- Mg24c Central abundance of 24Mg (Mg24c) (G4)
1574-1583 E10.4 --- Mg25c Central abundance of 25Mg (Mg25c) (G4)
1586-1595 E10.4 --- Mg26c Central abundance of 26Mg (Mg26c) (G4)
1598-1607 E10.4 --- Al26c Central abundance of 26Al (Al26c) (G4)
1610-1619 E10.4 --- Al27c Central abundance of 27Al (Al27c) (G4)
1622-1631 E10.4 --- Si28c Central abundance of 28Si (Si28c) (G4)
--------------------------------------------------------------------------------
Byte-by-byte Description of file (#): iso/*
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 F7.3 Msun Mini Mass (M_ini)
10- 17 F8.6 --- Zini Metallicity (Z_ini)
20- 24 F5.3 --- OmOcini Initial velocity (OmOc_ini) (G1)
28- 36 F9.6 [K] logTeff log10 of Effective temperature (logTeff)
38- 46 F9.6 [Lsun] logL log10 of Surface luminosity (logL)
48- 56 F9.6 [Lsun] logLgrav log10 of Gravothermal luminosity
(logLgrav)
61- 70 F10.8 Msun M Mass (M)
74- 82 F9.5 Rsun R Photospheric radius (R)
84- 88 F5.2 [cm/s2] logg log10 effective gravity (logg)
91- 99 E9.3 g/cm3 rhophot Photospheric density (rho_phot)
101- 110 F10.6 [Ms/yr] logdM/dt Mass-loss rate (logMdot)
113- 120 F8.6 [K] logTc log10 of central temperature (logTc)
122- 130 F9.6 [10-7J/cm3] logPc log10 of central pressure, in erg/cm3
(logPc)
132- 140 F9.6 [g/cm3] logrhoc log10 of central density (logrhoc)
142- 150 F9.6 [K] logTmax log10 of maximal temperature (logTmax)
152- 160 F9.6 Msun MrTmax Mass coordinate of Tmax (Mr_Tmax)
162- 170 F9.6 [g/cm3] logrhomax log10 of maximal density (logrhomax)
172- 182 E11.4 10-7J/g/s epsnucl Nuclear energy production rate,
in erg/g/s (eps_nucl)
184- 194 E11.4 10-7J/g/s epsgrav Gravothermal energy production rate,
in erg/g/s (eps_grav)
196- 206 E11.4 10-7J/g/s epsnu Plasma neutrino energy loss rate,
in erg/g/s (eps_nu)
209- 217 F9.7 Msun MrbCE Mass coordinate of the base of CE
(MrbCE)
220- 228 E9.3 --- normRbCE Normalised radius of the base of CE
(normRbCE)
231- 237 F7.5 [K] logTb log10 of Temp. at the base of CE (logT_b)
239- 246 F8.5 [g/cm3] logrhob log10 of density at the base of CE
(logrho_b)
249- 257 F9.7 Msun MrtCC Mass coordinate of the top of CC
(MrtCC)
260- 268 E9.3 --- normRtCC Normalised radius of the top of CC
(normRtCC)
270- 277 F8.5 [K] logTt log10 of Temp. at the top of CC (logT_t)
279- 286 F8.5 [g/cm3] logrhot log10 of density at the top of CC
(logrho_t)
289- 298 E10.4 yr taumax Maximal turnover timescale in the CE
(tau_max)
301- 310 E10.4 --- Romax Corresponding Rossby number (Ro_max)
313- 322 E10.4 yr taug Integrated turnover timescale over CE
(tau_g)
325- 334 E10.4 --- Rog Corresponding Rossby number (Ro_g)
337- 346 E10.4 yr tauHp2 Turnover timescale at Hp/2 above CE bot.
(tau_Hp2)
349- 358 E10.4 --- RoHp2 Corresponding Rossby number (Ro_Hp2)
361- 370 E10.4 yr tauHp Turnover timescale at Hp above CE bot.
(tau_Hp)
373- 382 E10.4 --- RoHp Corresponding Rossby number (Ro_Hp)
385- 394 E10.4 yr tauR2 Turnover timescale at mid CE in radius
(tau_R2)
397- 406 E10.4 --- RoR2 Corresponding Rossby number (Ro_R2)
409- 418 E10.4 yr tauM2 Turnover timescale at mid CE in mass
(tau_M2)
421- 430 E10.4 --- RoM2 Corresponding Rossby number (Ro_M2)
433- 442 E10.4 yr taumaxc Maximal turnover timescale in the CC
(taumaxc)
445- 454 E10.4 --- Romaxc Corresponding Rossby number (Romaxc)
457- 466 E10.4 yr taugc Integrated turnover timescale over CC
(taugc)
469- 478 E10.4 --- Rogc Corresponding Rossby number (Rogc)
481- 490 E10.4 yr tauHp2c Turnover timescale at Hp/2 below CC top
(tauHp2c)
493- 502 E10.4 --- RoHp2c Corresponding Rossby number (RoHp2c)
505- 514 E10.4 yr tauHpc Turnover timescale at Hp below CC top
(tauHpc)
517- 526 E10.4 --- RoHpc Corresponding Rossby number (RoHpc)
529- 538 E10.4 yr tauR2c Turnover timescale at mid CC in radius
(tauR2c)
541- 550 E10.4 --- RoR2c Corresponding Rossby number (RoR2c)
553- 562 E10.4 yr tauM2c Turnover timescale at mid CC in mass
(tauM2c)
565- 574 E10.4 --- RoM2c Corresponding Rossby number (RoM2c)
577- 586 E10.4 yr k2conv Tot reduced moment of inertia of the CE
(k2_conv)
589- 598 E10.4 --- k2rad Tot reduced moment of inertia below CE
(k2_rad)
601- 610 E10.4 rad/s Omegas Surface angular velocity (Omega_s)
613- 622 E10.4 rad/s Omegac Mean angular velocity of radiative zone
(Omega_c)
625- 632 E8.2 km/s Vsurf Surface rotation velocity (Vsurf)
635- 644 E10.4 d Prot Rotation period (Prot)
647- 654 E8.2 g.cm2/s Jact Total specific Ang. momentum of the star
(J_act)
657- 664 E8.2 g.cm2/s Jcore Specific AM of the core (J_core) (G2)
667- 676 E10.4 --- OOc Ratio of the angular and break-up veloc.
(OOc)
679- 686 E8.2 km/s Vcrit Break-up surface velocity (Vcrit)
688- 698 E11.4 g.cm2/s2 torque Total AM variation due to stellar winds
(torque)
701- 708 E8.2 G Bequi Magnetic field assuming equipartition
(B_equi) (G3)
710- 720 E11.4 muHz Dnu Large separation from asympt. relation
(D_nu)
722- 732 E11.4 muHz Dnuech Large separation from scaling relation
(Dnuech)
734- 744 E11.4 --- Dnuerr relative error on large separation
(Dnuerr)
746- 756 E11.4 muHz numax Frequency with maximum amplitude (nu_max)
758- 768 E11.4 s DPiasym Asymptotic period spacing of g-modes
(DPi_asym.)
770- 780 E11.4 s Racctot Total acoustic radius (Racctot)
782- 792 E11.4 s RaccBCE Acoustic radius at the base of CE
(RaccBCE)
794- 804 E11.4 s RaccHe Acoustic radius at the He 2nd ionisation
(RaccHe)
807- 813 F7.4 mag Mbol Bolometric magnitude (Mbol)
816- 822 F7.4 mag BC Bolometric corrections (BC)
825- 831 F7.4 mag U-B U-B colour index (U-B)
834- 840 F7.4 mag B-V B-V colour index (B-V)
843- 849 F7.4 mag V-R V-R colour index (V-R)
852- 858 F7.4 mag V-I V-I colour index (V-I)
861- 867 F7.4 mag J-K J-K colour index (J-K)
870- 876 F7.4 mag H-K H-K colour index (H-K)
879- 885 F7.4 mag V-K V-K colour index (V-K)
888- 894 F7.4 mag G-V G-V colour index (G-V)
897- 903 F7.4 mag Gbp-V Gbp-V colour index (Gbp-V)
906- 912 F7.4 mag Grp-V Grp-V colour index (Grp-V)
915- 921 F7.4 mag UMAG Absolute U magnitude (M_U)
924- 930 F7.4 mag BMAG Absolute B magnitude (M_B)
933- 939 F7.4 mag VMAG Absolute V magnitude (M_V)
942- 948 F7.4 mag RMAG Absolute R magnitude (M_R)
951- 957 F7.4 mag IMAG Absolute I magnitude (M_I)
960- 966 F7.4 mag HMAG Absolute H magnitude (M_H)
969- 975 F7.4 mag JMAG Absolute J magnitude (M_J)
978- 984 F7.4 mag KMAG Absolute K magnitude (M_K)
987- 993 F7.4 mag GMAG Absolute G magnitude (M_G)
996-1002 F7.4 mag GbpMAG Absolute Gbp magnitude (M_Gbp)
1005-1011 F7.4 mag GrpMAG Absolute Grp magnitude (M_Grp)
1014-1023 E10.4 --- H1s Surface abundance of H (H1s) (G4)
1026-1035 E10.4 --- H2s Surface abundance of Deuterium (H2s) (G4)
1038-1047 E10.4 --- He3s Surface abundance of 3He (He3s) (G4)
1050-1059 E10.4 --- He4s Surface abundance of 4He (He4s) (G4)
1062-1071 E10.4 --- Li6s Surface abundance of 6Li (Li6s) (G4)
1074-1083 E10.4 --- Li7s Surface abundance of 7Li (Li7s) (G4)
1086-1095 E10.4 --- Be7s Surface abundance of 7Be (Be7s) (G4)
1098-1107 E10.4 --- Be9s Surface abundance of 9Be (Be9s) (G4)
1110-1119 E10.4 --- B10s Surface abundance of 10B (B10s) (G4)
1122-1131 E10.4 --- B11s Surface abundance of 11B (B11s) (G4)
1134-1143 E10.4 --- C12s Surface abundance of 12C (C12s) (G4)
1146-1155 E10.4 --- C13s Surface abundance of 13C (C13s) (G4)
1158-1167 E10.4 --- C14s Surface abundance of 14C (C14s) (G4)
1170-1179 E10.4 --- N14s Surface abundance of 14N (N14s) (G4)
1182-1191 E10.4 --- N15s Surface abundance of 15N (N15s) (G4)
1194-1203 E10.4 --- O16s Surface abundance of 16O (O16s) (G4)
1206-1215 E10.4 --- O17s Surface abundance of 17O (O17s) (G4)
1218-1227 E10.4 --- O18s Surface abundance of 18O (O18s) (G4)
1230-1239 E10.4 --- F19s Surface abundance of 19F (F19s) (G4)
1242-1251 E10.4 --- Ne20s Surface abundance of 20Ne (Ne20s) (G4)
1254-1263 E10.4 --- Ne21s Surface abundance of 21Ne (Ne21s) (G4)
1266-1275 E10.4 --- Ne22s Surface abundance of 22Ne (Ne22s) (G4)
1278-1287 E10.4 --- Na23s Surface abundance of 23Na (Na23s) (G4)
1290-1299 E10.4 --- Mg24s Surface abundance of 24Mg (Mg24s) (G4)
1302-1311 E10.4 --- Mg25s Surface abundance of 25Mg (Mg25s) (G4)
1314-1323 E10.4 --- Mg26s Surface abundance of 26Mg (Mg26s) (G4)
1326-1335 E10.4 --- Al26s Surface abundance of 26Al (Al26s) (G4)
1338-1347 E10.4 --- Al27s Surface abundance of 27Al (Al27s) (G4)
1350-1359 E10.4 --- Si28s Surface abundance of 28Si (Si28s) (G4)
1362-1371 E10.4 --- H1c Central abundance of H (H1c) (G4)
1374-1383 E10.4 --- H2c Central abundance of Deuterium (H2c) (G4)
1386-1395 E10.4 --- He3c Central abundance of 3He (He3c) (G4)
1398-1407 E10.4 --- He4c Central abundance of 4He (He4c) (G4)
1410-1419 E10.4 --- C12c Central abundance of 12C (C12c) (G4)
1422-1431 E10.4 --- C13c Central abundance of 13C (C13c) (G4)
1434-1443 E10.4 --- C14c Central abundance of 14C (C14c) (G4)
1446-1455 E10.4 --- N14c Central abundance of 14N (N14c) (G4)
1458-1467 E10.4 --- N15c Central abundance of 15N (N15c) (G4)
1470-1479 E10.4 --- O16c Central abundance of 16O (O16c) (G4)
1482-1491 E10.4 --- O17c Central abundance of 17O (O17c) (G4)
1494-1503 E10.4 --- O18c Central abundance of 18O (O18c) (G4)
1506-1515 E10.4 --- F19c Central abundance of 19F (F19c) (G4)
1518-1527 E10.4 --- Ne20c Central abundance of 20Ne (Ne20c) (G4)
1530-1539 E10.4 --- Ne21c Central abundance of 21Ne (Ne21c) (G4)
1542-1551 E10.4 --- Ne22c Central abundance of 22Ne (Ne22c) (G4)
1554-1563 E10.4 --- Na23c Central abundance of 23Na (Na23c) (G4)
1566-1575 E10.4 --- Mg24c Central abundance of 24Mg (Mg24c) (G4)
1578-1587 E10.4 --- Mg25c Central abundance of 25Mg (Mg25c) (G4)
1590-1599 E10.4 --- Mg26c Central abundance of 26Mg (Mg26c) (G4)
1602-1611 E10.4 --- Al26c Central abundance of 26Al (Al26c) (G4)
1614-1623 E10.4 --- Al27c Central abundance of 27Al (Al27c) (G4)
1626-1635 E10.4 --- Si28c Central abundance of 28Si (Si28c) (G4)
--------------------------------------------------------------------------------
Global notes:
Notes (G1): Initial velocity as follows:
0.000 : standard
0.200 : slow rotators
0.040 : median rotators
0.060 : fast rotators
Notes (G2): Core = radiative region + potential convective core
Notes (G3): Formula from Cranmer & Saar (2011ApJ...741...54C 2011ApJ...741...54C)
Notes (G4): Abundances in mass fraction
--------------------------------------------------------------------------------
Acknowledgements:
Amard Louis, l.amard(at)exeter.ac.uk
(End) Patricia Vannier [CDS] 18-Oct-2019