J/A+A/638/A45       Obscuration properties of red AGNs in XXL-N (Masoura+, 2020)

The XXL Survey. XL. Obscuration properties of red AGNs in XXL-N. Masoura V.A., Georgantopoulos I., Mountrichas G., Vignali C., Koulouridis E., Chiappetti L., Fotopoulou S., Paltani S., Pierre M. <Astron. Astrophys., 638, A45 (2020)> =2020A&A...638A..45M 2020A&A...638A..45M (SIMBAD/NED BibCode)
ADC_Keywords: X-ray sources ; Active gal. nuclei Keywords: galaxies: active - X-rays: galaxies Abstract: The combination of optical and mid-infrared (MIR) photometry has been extensively used to select red active galactic nuclei (AGNs). Our aim is to explore the obscuration properties of these red AGNs with both X-ray spectroscopy and spectral energy distributions (SEDs). In this study, we re-visit the relation between optical/MIR extinction and X-ray absorption. We use IR selection criteria, specifically the W1 and W2 WISE bands, to identify 4798 AGNs in the XMM-XXL area (∼25deg2). Application of optical/MIR colours (r-W2>6) reveals 561 red AGNs (14%). Of these, 47 have available X-ray spectra with at least 50 net (background-subtracted) counts per detector. For these sources, we construct SEDs from the optical to the MIR using the CIGALE code. The SED fitting shows that 44 of these latter 47 sources present clear signs of obscuration based on the AGN emission and the estimated inclination angle. Fitting the SED also reveals ten systems (∼20%) which are dominated by the galaxy. In these cases, the red colours are attributed to the host galaxy rather than AGN absorption. Excluding these ten systems from our sample and applying X-ray spectral fitting analysis shows that up to 76% (28/37) of the IR red AGNs present signs of X-ray absorption. Thus, there are nine sources (∼20% of the sample) that although optically red, are not substantially X-ray absorbed. Approximately 50% of these sources present broad emission lines in their optical spectra. We suggest that the reason for this apparent discrepancy is that the r-W2 criterion is sensitive to smaller amounts of obscuration relative to the X-ray spectroscopy. In conclusion, it appears that the majority of red AGNs present considerable obscuration levels as shown by their SEDs. Their X-ray absorption is moderate with a mean of NH∼1022cm-2. Description: We classify the 47 optically red AGNs of our sample as obscured or unobscured using different criteria. Specifically, we examine their X-ray spectra, SEDs, and optical spectra. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 38 47 General properties of the red AGN sample table3.dat 54 47 X-ray properties of the red AGN sample table5.dat 32 47 SED properties of the red AGN sample table6.dat 28 47 Optical properties of the red AGN sample table7.dat 26 47 Comparison of the X-ray, SED, and optical properties -------------------------------------------------------------------------------- See also: IX/49 : XXL Survey: First results (Pierre+, 2016) IX/52 : XXL Survey. DR2 (Chiappetti+, 2018) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Seq Sequential number 4- 19 A16 --- 3XLSS 3XLSS ID (JHHMMSS.s+DDMMSS) 21- 25 F5.3 --- z Redshift 26 A1 --- n_z [s/p] spectroscopic (s) or photometric (p) redshift 28- 32 F5.2 mag rmag SDSS DR15 r magnitude (Vega) 34- 38 F5.2 mag W2mag W2 magnitude (Vega) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Seq Sequential number 4- 19 A16 --- 3XLSS 3XLSS ID (JHHMMSS.s+DDMMSS) 20 A1 --- n_3XLSS [ib] Note on 3XLSS (1) 22 A1 --- l_NH Limit flag on NH 23- 27 F5.2 10+22cm-2 NH Hydrogen column density 29- 32 F4.1 10+22cm-2 NHG1.8 ? Hydrogen column density at GAMMA=1.8 (2) 34- 37 F4.2 --- GAMMA Photon index 39- 45 E7.2 [10-7W] logLX X-ray luminosity in 2-10keV band 47- 49 I3 --- C-stat C statistic 50 A1 --- --- [/] 51- 54 I4 --- dof Degree of freedom -------------------------------------------------------------------------------- Note (1): Notes as follows: b = Sources classified as X-ray obscured based on our strict criteria (see text for more details) i = Sources that satisfy the loosened X-ray criteria (see text) Note (2): When GAMMA≤1.2, we quote the NH estimations with GAMMA fixed to GAMMA=1.8. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Seq Sequential number 4- 19 A16 --- 3XLSS 3XLSS ID (JHHMMSS.s+DDMMSS) 21- 22 I2 deg PSI Viewing angle of the torus (1) 24- 27 F4.2 --- fracAGN AGN fraction 29- 32 F4.2 --- chi2r Reduced chi2 value -------------------------------------------------------------------------------- Note (1): We consider sources with PSI≤30° as Type 2 (edge-on), 40°≤PSI≤60° as intermediate and PSI≥70° as Type 1 AGNs, based on their best-fit values. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Seq Sequential number 4- 19 A16 --- 3XLSS 3XLSS ID (JHHMMSS.s+DDMMSS) 21- 28 A8 ---- Optical Optical properties (1) -------------------------------------------------------------------------------- Note (1): Optically unobscured sources (Type 1) are considered to be those with broad emission lines (BL). Whereas obscured sources (Type 2) exhibit only narrow emission lines (NL) or a red continuum. The AGNs are characterised as obscured, unobscured, or intermediate type (IMD) based on visual inspection of their optical spectra. We note that in the optical spectra of sources 13 and 22, while the MgII lines are broad, all other lines are narrow. This is attributed to the wider area from which the MgII originates with respect to the Balmer lines. These sources are characterized as IMD. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- Seq Sequential number 4- 19 A16 --- 3XLSS 3XLSS ID (JHHMMSS.s+DDMMSS) 20 A1 --- n_3XLSS [b/i] Note on 3XLSS (1) 22 I1 --- Xray [1/2] X-ray classification (2) 24 I1 --- SED [1/2] SED classification (2) 26 I1 --- Opt [0/3]? Optical-based classification (2) -------------------------------------------------------------------------------- Note (1): Note as follows: b = Sources classified as X-ray obscured based on our strict criteria (see text for more details) i = Sources that satisfy the loosened X-ray criteria (see text). Note (2): Classification code as follows: 1 = unobscured, used to denote the classification of the sources based on the various criteria 2 = obscured, used to denote the classification of the sources based on the various criteria 0 = optical spectra that are too noisy to allow us to classify them 3 = optical spectra that are IMD type -------------------------------------------------------------------------------- History: From electronic version of the journal References: XXL DR1 Pierre et al., Paper I 2016A&A...592A...1P 2016A&A...592A...1P Pacaud et al., Paper II 2016A&A...592A...2P 2016A&A...592A...2P Giles et al., Paper III 2016A&A...592A...3G 2016A&A...592A...3G Lieu et al., Paper IV 2016A&A...592A...4L 2016A&A...592A...4L Mantz et al. Paper V 2014ApJ...794..157M 2014ApJ...794..157M Fotopoulou et al., Paper VI 2016A&A...592A...5F 2016A&A...592A...5F Pompei et al., Paper VII 2016A&A...592A...6P 2016A&A...592A...6P Adami et al., Paper VIII 2016A&A...592A...7A 2016A&A...592A...7A Baran et al., Paper IX 2016A&A...592A...8B 2016A&A...592A...8B Ziparo et al., Paper X 2016A&A...592A...9Z 2016A&A...592A...9Z Smolic et al., Paper XI 2016A&A...592A..10S 2016A&A...592A..10S Koulouridis et al., Paper XII 2016A&A...592A..11K 2016A&A...592A..11K Eckert et al., Paper XIII 2016A&A...592A..12E 2016A&A...592A..12E Lidman et al., Paper XIV 2016PASA...33....1L 2016PASA...33....1L Lavoie et al., Paper XV 2016MNRAS.462.4141L 2016MNRAS.462.4141L XXL DR2 Marulli et al., Paper XVI 2018A&A...620A...1M 2018A&A...620A...1M Mantz et al., Paper XVII 2018A&A...620A...2M 2018A&A...620A...2M Butler et al., Paper XVIII 2018A&A...620A...3B 2018A&A...620A...3B Koulouridis et al., Paper XIX 2018A&A...620A...4K 2018A&A...620A...4K Adami et al., Paper XX 2018A&A...620A...5A 2018A&A...620A...5A Melnyk et al., Paper XXI 2018A&A...620A...6M 2018A&A...620A...6M Guglielmo et al., Paper XXII 2018A&A...620A...7G 2018A&A...620A...7G Farahi et al., Paper XXIII 2018A&A...620A...8F 2018A&A...620A...8F Faccioli et al., Paper XXIV 2018A&A...620A...9F 2018A&A...620A...9F Pacaud et al., Paper XXV 2018A&A...620A..10P 2018A&A...620A..10P Ciliegi et al., Paper XXVI 2018A&A...620A..11C 2018A&A...620A..11C Chiappetti et al., Paper XXVII 2018A&A...620A..12C 2018A&A...620A..12C Ricci et al., Paper XXVIII 2018A&A...620A..13R 2018A&A...620A..13R Smolcic et al., Paper XXIX 2018A&A...620A..14S 2018A&A...620A..14S Guglielmo et al., Paper XXX 2018A&A...620A..15G 2018A&A...620A..15G Butler et al., Paper XXXI 2018A&A...620A..16B 2018A&A...620A..16B Plionis et al., Paper XXXII 2018A&A...620A..17P 2018A&A...620A..17P Logan et al., Paper XXXIII 2018A&A...620A..18L 2018A&A...620A..18L Horellou et al., Paper XXXIV 2018A&A...620A..19H 2018A&A...620A..19H Koulouridis et al., Paper XXXV 2018A&A...620A..20K 2018A&A...620A..20K Butler et al., Paper XXXVI 2019A&A...625A.111B 2019A&A...625A.111B Guglielmo et al., Paper XXXVII 2019A&A...625A.112G 2019A&A...625A.112G Sereno et al., Paper XXXVIII 2019A&A...632A..54S 2019A&A...632A..54S Eyles et al., Paper XXXIX 2020A&A...633A...6E 2020A&A...633A...6E Slaus et al., Paper XLI 2020A&A...638A..46S 2020A&A...638A..46S, Cat J/A+A/638/A46
(End) Patricia Vannier [CDS] 30-Sep-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line