J/A+A/641/A127 13 dsph and ultra-faint galaxies analysis (Reichert+, 2020)
Neutron-capture elements in dwarf galaxies.
III: A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies.
Reichert M., Hansen C.J., Hanke M., Skuladottir A., Arcones A., Grebel E.K.
<Astron. Astrophys. 641, A127 (2020)>
=2020A&A...641A.127R 2020A&A...641A.127R (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, nearby ; Abundances
Keywords: galaxies: dwarf - galaxies: abundances - galaxies: evolution -
catalogs - stars: abundances - stars: fundamental parameters
Abstract:
We present a large homogeneous set of stellar parameters and
abundances across a broad range of metallicities, involving 13
classical dwarf spheroidal (dSph) and ultra-faint dSph (UFD) galaxies.
In total, this study includes 380 stars in Fornax, Sagittarius,
Sculptor, Sextans, Carina, Ursa Minor, Draco, Reticulum II, Bootes I,
Ursa Major II, Leo I, Segue I, and Triangulum II. This sample
represents the largest, homogeneous, high-resolution study of dSph
galaxies to date.
With our homogeneously derived catalog, we are able to search for
similar and deviating trends across different galaxies. We investigate
the mass dependence of the individual systems on the production of
alpha-elements, but also try to shed light on the long-standing puzzle
of the dominant production site of r-process elements.
We used data from the Keck observatory archive and the ESO reduced
archive to reanalyze stars from these 13 classical dSph and UFD
galaxies. We automatized the step of obtaining stellar parameters, but
ran a full spectrum synthesis (1D, local thermal equilibrium) to
derive all abundances except for iron to which we applied nonlocal
thermodynamic equilibrium corrections where possible.
The homogenized set of abundances yielded the unique possibility of
deriving a relation between the onset of type Ia supernovae and the
stellar mass of the galaxy. Furthermore, we derived a formula to
estimate the evolution of alpha-elements. This reveals a universal
relation of these systems across a large range in mass. Finally, we
show that between stellar masses of 2.1x107M☉ and
2.9x105M☉ , there is no dependence of the production of heavy
r-process elements on the stellar mass of the galaxy.
Placing all abundances consistently on the same scale is crucial to
answering questions about the chemical history of galaxies. By
homogeneously analyzing Ba and Eu in the 13 systems, we have traced
the onset of the s-process and found it to increase with metallicity
as a function of the galaxy's stellar mass. Moreover, the r-process
material correlates with the alpha-elements indicating some
coproduction of these, which in turn would point toward rare
core-collapse supernovae rather than binary neutron star mergers as a
host for the r-process at low [Fe/H] in the investigated dSph systems.
Description:
The following tables contain abundances of individual absorption
lines, stellar parameters of the investigated stars, and averaged
abundances together with their error.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tableo1.dat 67 380 Stellar parameters
tableo2.dat 57 4606 Absolute abundances per absorption feature
tableo3.dat 493 380 Absolute abundances and inferred errors
--------------------------------------------------------------------------------
See also:
J/A+A/631/A171 : Neutron-capture elements in dwarf galaxies (Skuladottir+ 2019)
Byte-by-byte Description of file: tableo1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 30 A30 --- ID Object identifier
32- 37 A6 --- Galaxy Galaxy identifier
39- 42 I4 K Teff Adopted effective temperature
44- 46 I3 K e_Teff Effective temperature error
48- 52 F5.2 [-] [Fe/H] Metallicity
54- 57 F4.2 [-] e_[Fe/H] Metallicity error
59- 62 F4.2 [cm/s2] logg Adopted surface gravity
64- 67 F4.2 [cm/s2] e_logg Surface gravity error
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableo2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 30 A30 --- ID Object identifier
32- 37 A6 --- Galaxy Galaxy identifier
39- 40 A2 --- El Investigated element
42- 43 A2 --- Ion Ionization state of the absorption feature
45- 51 F7.2 0.1nm lambda Wavelength of the absorption feature
53- 57 F5.2 [-] log(eps) Absolute abundance
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableo3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 30 A30 --- ID Object identifier
32- 37 A6 --- Galaxy Galaxy identifier
39- 43 F5.2 [-] [Fe/H] Metallicity
45- 48 F4.2 [-] e_[Fe/H] Metallicity error
50- 53 F4.2 [-] logeps(Mg) ? Absolute Mg abundance
55- 58 F4.2 [-] e_(tot)(Mg) ? Total error on Mg
60- 63 F4.2 [-] e_(temp)(Mg) ? Temperature error on Mg
65- 68 F4.2 [-] e_(logg)(Mg) ? Surface gravity error on Mg
70- 73 F4.2 [-] e_([Fe/H])(Mg) ? Metallicity error on Mg
75- 78 F4.2 [-] e_(v)(Mg) ? Microturbulence error on Mg
80- 83 F4.2 [-] e_(stat)(Mg) ? Statistical error on Mg
85- 88 F4.2 [-] e_(noise)(Mg) ? Error inferred through noise on Mg
90- 94 F5.2 [-] logeps(Sc) ? Absolute Sc abundance
96- 99 F4.2 [-] e_(tot)(Sc) ? Total error on Sc
101-104 F4.2 [-] e_(temp)(Sc) ? Temperature error on Sc
106-109 F4.2 [-] e_(logg)(Sc) ? Surface gravity error on Sc
111-114 F4.2 [-] e_([Fe/H])(Sc) ? Metallicity error on Sc
116-119 F4.2 [-] e_(v)(Sc) ? Microturbulence error on Sc
121-124 F4.2 [-] e_(stat)(Sc) ? Statistical error on Sc
126-129 F4.2 [-] e_(noise)(Sc) ? Error inferred through noise on Sc
131-134 F4.2 [-] logeps(Ti) ? Absolute Ti abundance
136-139 F4.2 [-] e_(tot)(Ti) ? Total error on Ti
141-144 F4.2 [-] e_(temp)(Ti) ? Temperature error on Ti
146-149 F4.2 [-] e_(logg)(Ti) ? Surface gravity error on Ti
151-154 F4.2 [-] e_([Fe/H])(Ti) ? Metallicity error on Ti
156-159 F4.2 [-] e_(v)(Ti) ? Microturbulence error on Ti
161-164 F4.2 [-] e_(stat)(Ti) ? Statistical error on Ti
166-169 F4.2 [-] e_(noise)(Ti) ? Error inferred through noise on Ti
171-174 F4.2 [-] logeps(Cr) ? Absolute Cr abundance
176-179 F4.2 [-] e_(tot)(Cr) ? Total error on Cr
181-184 F4.2 [-] e_(temp)(Cr) ? Temperature error on Cr
186-189 F4.2 [-] e_(logg)(Cr) ? Surface gravity error on Cr
191-194 F4.2 [-] e_([Fe/H])(Cr) ? Metallicity error on Cr
196-199 F4.2 [-] e_(v)(Cr) ? Microturbulence error on Cr
201-204 F4.2 [-] e_(stat)(Cr) ? Statistical error on Cr
206-209 F4.2 [-] e_(noise)(Cr) ? Error inferred through noise on Cr
211-214 F4.2 [-] logeps(Mn) ? Absolute Mn abundance
216-219 F4.2 [-] e_(tot)(Mn) ? Total error on Mn
221-224 F4.2 [-] e_(temp)(Mn) ? Temperature error on Mn
226-229 F4.2 [-] e_(logg)(Mn) ? Surface gravity error on Mn
231-234 F4.2 [-] e_([Fe/H])(Mn) ? Metallicity error on Mn
236-239 F4.2 [-] e_(v)(Mn) ? Microturbulence error on Mn
241-244 F4.2 [-] e_(stat)(Mn) ? Statistical error on Mn
246-249 F4.2 [-] e_(noise)(Mn) ? Error inferred through noise on Mn
251-254 F4.2 [-] logeps(Ni) ? Absolute Ni abundance
256-259 F4.2 [-] e_(tot)(Ni) ? Total error on Ni
261-264 F4.2 [-] e_(temp)(Ni) ? Temperature error on Ni
266-269 F4.2 [-] e_(logg)(Ni) ? Surface gravity error on Ni
271-274 F4.2 [-] e_([Fe/H])(Ni) ? Metallicity error on Ni
276-279 F4.2 [-] e_(v)(Ni) ? Microturbulence error on Ni
281-284 F4.2 [-] e_(stat)(Ni) ? Statistical error on Ni
286-289 F4.2 [-] e_(noise)(Ni) ? Error inferred through noise on Ni
291-294 F4.2 [-] logeps(Zn) ? Absolute Zn abundance
296-299 F4.2 [-] e_(tot)(Zn) ? Total error on Zn
301-304 F4.2 [-] e_(temp)(Zn) ? Temperature error on Zn
306-309 F4.2 [-] e_(logg)(Zn) ? Surface gravity error on Zn
311-314 F4.2 [-] e_([Fe/H])(Zn) ? Metallicity error on Zn
316-319 F4.2 [-] e_(v)(Zn) ? Microturbulence error on Zn
321-324 F4.2 [-] e_(stat)(Zn) ? Statistical error on Zn
326-329 F4.2 [-] e_(noise)(Zn) ? Error inferred through noise on Zn
331-335 F5.2 [-] logeps(Sr) ? Absolute Sr abundance
337-340 F4.2 [-] e_(tot)(Sr) ? Total error on Sr
342-345 F4.2 [-] e_(temp)(Sr) ? Temperature error on Sr
347-350 F4.2 [-] e_(logg)(Sr) ? Surface gravity error on Sr
352-355 F4.2 [-] e_([Fe/H])(Sr) ? Metallicity error on Sr
357-360 F4.2 [-] e_(v)(Sr) ? Microturbulence error on Sr
362-365 F4.2 [-] e_(stat)(Sr) ? Statistical error on Sr
367-370 F4.2 [-] e_(noise)(Sr) ? Error inferred through noise on Sr
372-376 F5.2 [-] logeps(Y) ? Absolute Y abundance
378-381 F4.2 [-] e_(tot)(Y) ? Total error on Y
383-386 F4.2 [-] e_(temp)(Y) ? Temperature error on Y
388-391 F4.2 [-] e_(logg)(Y) ? Surface gravity error on Y
393-396 F4.2 [-] e_([Fe/H])(Y) ? Metallicity error on Y
398-401 F4.2 [-] e_(v)(Y) ? Microturbulence error on Y
403-406 F4.2 [-] e_(stat)(Y) ? Statistical error on Y
408-411 F4.2 [-] e_(noise)(Y) ? Error inferred through noise on Y
413-417 F5.2 [-] logeps(Ba) ? Absolute Ba abundance
419-422 F4.2 [-] e_(tot)(Ba) ? Total error on Ba
424-427 F4.2 [-] e_(temp)(Ba) ? Temperature error on Ba
429-432 F4.2 [-] e_(logg)(Ba) ? Surface gravity error on Ba
434-437 F4.2 [-] e_([Fe/H])(Ba) ? Metallicity error on Ba
439-442 F4.2 [-] e_(v)(Ba) ? Microturbulence error on Ba
444-447 F4.2 [-] e_(stat)(Ba) ? Statistical error on Ba
449-452 F4.2 [-] e_(noise)(Ba) ? Error inferred through noise on Ba
454-458 F5.2 [-] logeps(Eu) ? Absolute Eu abundance
460-463 F4.2 [-] e_(tot)(Eu) ? Total error on Eu
465-468 F4.2 [-] e_(temp)(Eu) ? Temperature error on Eu
470-473 F4.2 [-] e_(logg)(Eu) ? Surface gravity error on Eu
475-478 F4.2 [-] e_([Fe/H])(Eu) ? Metallicity error on Eu
480-483 F4.2 [-] e_(v)(Eu) ? Microturbulence error on Eu
485-488 F4.2 [-] e_(stat)(Eu) ? Statistical error on Eu
490-493 F4.2 [-] e_(noise)(Eu) ? Error inferred through noise on Eu
--------------------------------------------------------------------------------
Acknowledgements:
Moritz Reichert, mreichert(at)theorie.ikp.physik.tu-darmstadt.de
References:
Skuladottir et al., Paper I 2019A&A...631A.171S 2019A&A...631A.171S, Cat. J/A+A/631/A171
Skuladottir et al., Paper II 2020A&A...634A..84S 2020A&A...634A..84S
(End) Moritz Reichert [Darmstadt], Patricia Vannier [CDS] 13-Aug-2020