J/A+A/641/A127     13 dsph and ultra-faint galaxies analysis   (Reichert+, 2020)

Neutron-capture elements in dwarf galaxies. III: A homogenized analysis of 13 dwarf spheroidal and ultra-faint galaxies. Reichert M., Hansen C.J., Hanke M., Skuladottir A., Arcones A., Grebel E.K. <Astron. Astrophys. 641, A127 (2020)> =2020A&A...641A.127R 2020A&A...641A.127R (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, nearby ; Abundances Keywords: galaxies: dwarf - galaxies: abundances - galaxies: evolution - catalogs - stars: abundances - stars: fundamental parameters Abstract: We present a large homogeneous set of stellar parameters and abundances across a broad range of metallicities, involving 13 classical dwarf spheroidal (dSph) and ultra-faint dSph (UFD) galaxies. In total, this study includes 380 stars in Fornax, Sagittarius, Sculptor, Sextans, Carina, Ursa Minor, Draco, Reticulum II, Bootes I, Ursa Major II, Leo I, Segue I, and Triangulum II. This sample represents the largest, homogeneous, high-resolution study of dSph galaxies to date. With our homogeneously derived catalog, we are able to search for similar and deviating trends across different galaxies. We investigate the mass dependence of the individual systems on the production of alpha-elements, but also try to shed light on the long-standing puzzle of the dominant production site of r-process elements. We used data from the Keck observatory archive and the ESO reduced archive to reanalyze stars from these 13 classical dSph and UFD galaxies. We automatized the step of obtaining stellar parameters, but ran a full spectrum synthesis (1D, local thermal equilibrium) to derive all abundances except for iron to which we applied nonlocal thermodynamic equilibrium corrections where possible. The homogenized set of abundances yielded the unique possibility of deriving a relation between the onset of type Ia supernovae and the stellar mass of the galaxy. Furthermore, we derived a formula to estimate the evolution of alpha-elements. This reveals a universal relation of these systems across a large range in mass. Finally, we show that between stellar masses of 2.1x107M and 2.9x105M , there is no dependence of the production of heavy r-process elements on the stellar mass of the galaxy. Placing all abundances consistently on the same scale is crucial to answering questions about the chemical history of galaxies. By homogeneously analyzing Ba and Eu in the 13 systems, we have traced the onset of the s-process and found it to increase with metallicity as a function of the galaxy's stellar mass. Moreover, the r-process material correlates with the alpha-elements indicating some coproduction of these, which in turn would point toward rare core-collapse supernovae rather than binary neutron star mergers as a host for the r-process at low [Fe/H] in the investigated dSph systems. Description: The following tables contain abundances of individual absorption lines, stellar parameters of the investigated stars, and averaged abundances together with their error. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableo1.dat 67 380 Stellar parameters tableo2.dat 57 4606 Absolute abundances per absorption feature tableo3.dat 493 380 Absolute abundances and inferred errors -------------------------------------------------------------------------------- See also: J/A+A/631/A171 : Neutron-capture elements in dwarf galaxies (Skuladottir+ 2019) Byte-by-byte Description of file: tableo1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 30 A30 --- ID Object identifier 32- 37 A6 --- Galaxy Galaxy identifier 39- 42 I4 K Teff Adopted effective temperature 44- 46 I3 K e_Teff Effective temperature error 48- 52 F5.2 [-] [Fe/H] Metallicity 54- 57 F4.2 [-] e_[Fe/H] Metallicity error 59- 62 F4.2 [cm/s2] logg Adopted surface gravity 64- 67 F4.2 [cm/s2] e_logg Surface gravity error -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableo2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 30 A30 --- ID Object identifier 32- 37 A6 --- Galaxy Galaxy identifier 39- 40 A2 --- El Investigated element 42- 43 A2 --- Ion Ionization state of the absorption feature 45- 51 F7.2 0.1nm lambda Wavelength of the absorption feature 53- 57 F5.2 [-] log(eps) Absolute abundance -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableo3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 30 A30 --- ID Object identifier 32- 37 A6 --- Galaxy Galaxy identifier 39- 43 F5.2 [-] [Fe/H] Metallicity 45- 48 F4.2 [-] e_[Fe/H] Metallicity error 50- 53 F4.2 [-] logeps(Mg) ? Absolute Mg abundance 55- 58 F4.2 [-] e_(tot)(Mg) ? Total error on Mg 60- 63 F4.2 [-] e_(temp)(Mg) ? Temperature error on Mg 65- 68 F4.2 [-] e_(logg)(Mg) ? Surface gravity error on Mg 70- 73 F4.2 [-] e_([Fe/H])(Mg) ? Metallicity error on Mg 75- 78 F4.2 [-] e_(v)(Mg) ? Microturbulence error on Mg 80- 83 F4.2 [-] e_(stat)(Mg) ? Statistical error on Mg 85- 88 F4.2 [-] e_(noise)(Mg) ? Error inferred through noise on Mg 90- 94 F5.2 [-] logeps(Sc) ? Absolute Sc abundance 96- 99 F4.2 [-] e_(tot)(Sc) ? Total error on Sc 101-104 F4.2 [-] e_(temp)(Sc) ? Temperature error on Sc 106-109 F4.2 [-] e_(logg)(Sc) ? Surface gravity error on Sc 111-114 F4.2 [-] e_([Fe/H])(Sc) ? Metallicity error on Sc 116-119 F4.2 [-] e_(v)(Sc) ? Microturbulence error on Sc 121-124 F4.2 [-] e_(stat)(Sc) ? Statistical error on Sc 126-129 F4.2 [-] e_(noise)(Sc) ? Error inferred through noise on Sc 131-134 F4.2 [-] logeps(Ti) ? Absolute Ti abundance 136-139 F4.2 [-] e_(tot)(Ti) ? Total error on Ti 141-144 F4.2 [-] e_(temp)(Ti) ? Temperature error on Ti 146-149 F4.2 [-] e_(logg)(Ti) ? Surface gravity error on Ti 151-154 F4.2 [-] e_([Fe/H])(Ti) ? Metallicity error on Ti 156-159 F4.2 [-] e_(v)(Ti) ? Microturbulence error on Ti 161-164 F4.2 [-] e_(stat)(Ti) ? Statistical error on Ti 166-169 F4.2 [-] e_(noise)(Ti) ? Error inferred through noise on Ti 171-174 F4.2 [-] logeps(Cr) ? Absolute Cr abundance 176-179 F4.2 [-] e_(tot)(Cr) ? Total error on Cr 181-184 F4.2 [-] e_(temp)(Cr) ? Temperature error on Cr 186-189 F4.2 [-] e_(logg)(Cr) ? Surface gravity error on Cr 191-194 F4.2 [-] e_([Fe/H])(Cr) ? Metallicity error on Cr 196-199 F4.2 [-] e_(v)(Cr) ? Microturbulence error on Cr 201-204 F4.2 [-] e_(stat)(Cr) ? Statistical error on Cr 206-209 F4.2 [-] e_(noise)(Cr) ? Error inferred through noise on Cr 211-214 F4.2 [-] logeps(Mn) ? Absolute Mn abundance 216-219 F4.2 [-] e_(tot)(Mn) ? Total error on Mn 221-224 F4.2 [-] e_(temp)(Mn) ? Temperature error on Mn 226-229 F4.2 [-] e_(logg)(Mn) ? Surface gravity error on Mn 231-234 F4.2 [-] e_([Fe/H])(Mn) ? Metallicity error on Mn 236-239 F4.2 [-] e_(v)(Mn) ? Microturbulence error on Mn 241-244 F4.2 [-] e_(stat)(Mn) ? Statistical error on Mn 246-249 F4.2 [-] e_(noise)(Mn) ? Error inferred through noise on Mn 251-254 F4.2 [-] logeps(Ni) ? Absolute Ni abundance 256-259 F4.2 [-] e_(tot)(Ni) ? Total error on Ni 261-264 F4.2 [-] e_(temp)(Ni) ? Temperature error on Ni 266-269 F4.2 [-] e_(logg)(Ni) ? Surface gravity error on Ni 271-274 F4.2 [-] e_([Fe/H])(Ni) ? Metallicity error on Ni 276-279 F4.2 [-] e_(v)(Ni) ? Microturbulence error on Ni 281-284 F4.2 [-] e_(stat)(Ni) ? Statistical error on Ni 286-289 F4.2 [-] e_(noise)(Ni) ? Error inferred through noise on Ni 291-294 F4.2 [-] logeps(Zn) ? Absolute Zn abundance 296-299 F4.2 [-] e_(tot)(Zn) ? Total error on Zn 301-304 F4.2 [-] e_(temp)(Zn) ? Temperature error on Zn 306-309 F4.2 [-] e_(logg)(Zn) ? Surface gravity error on Zn 311-314 F4.2 [-] e_([Fe/H])(Zn) ? Metallicity error on Zn 316-319 F4.2 [-] e_(v)(Zn) ? Microturbulence error on Zn 321-324 F4.2 [-] e_(stat)(Zn) ? Statistical error on Zn 326-329 F4.2 [-] e_(noise)(Zn) ? Error inferred through noise on Zn 331-335 F5.2 [-] logeps(Sr) ? Absolute Sr abundance 337-340 F4.2 [-] e_(tot)(Sr) ? Total error on Sr 342-345 F4.2 [-] e_(temp)(Sr) ? Temperature error on Sr 347-350 F4.2 [-] e_(logg)(Sr) ? Surface gravity error on Sr 352-355 F4.2 [-] e_([Fe/H])(Sr) ? Metallicity error on Sr 357-360 F4.2 [-] e_(v)(Sr) ? Microturbulence error on Sr 362-365 F4.2 [-] e_(stat)(Sr) ? Statistical error on Sr 367-370 F4.2 [-] e_(noise)(Sr) ? Error inferred through noise on Sr 372-376 F5.2 [-] logeps(Y) ? Absolute Y abundance 378-381 F4.2 [-] e_(tot)(Y) ? Total error on Y 383-386 F4.2 [-] e_(temp)(Y) ? Temperature error on Y 388-391 F4.2 [-] e_(logg)(Y) ? Surface gravity error on Y 393-396 F4.2 [-] e_([Fe/H])(Y) ? Metallicity error on Y 398-401 F4.2 [-] e_(v)(Y) ? Microturbulence error on Y 403-406 F4.2 [-] e_(stat)(Y) ? Statistical error on Y 408-411 F4.2 [-] e_(noise)(Y) ? Error inferred through noise on Y 413-417 F5.2 [-] logeps(Ba) ? Absolute Ba abundance 419-422 F4.2 [-] e_(tot)(Ba) ? Total error on Ba 424-427 F4.2 [-] e_(temp)(Ba) ? Temperature error on Ba 429-432 F4.2 [-] e_(logg)(Ba) ? Surface gravity error on Ba 434-437 F4.2 [-] e_([Fe/H])(Ba) ? Metallicity error on Ba 439-442 F4.2 [-] e_(v)(Ba) ? Microturbulence error on Ba 444-447 F4.2 [-] e_(stat)(Ba) ? Statistical error on Ba 449-452 F4.2 [-] e_(noise)(Ba) ? Error inferred through noise on Ba 454-458 F5.2 [-] logeps(Eu) ? Absolute Eu abundance 460-463 F4.2 [-] e_(tot)(Eu) ? Total error on Eu 465-468 F4.2 [-] e_(temp)(Eu) ? Temperature error on Eu 470-473 F4.2 [-] e_(logg)(Eu) ? Surface gravity error on Eu 475-478 F4.2 [-] e_([Fe/H])(Eu) ? Metallicity error on Eu 480-483 F4.2 [-] e_(v)(Eu) ? Microturbulence error on Eu 485-488 F4.2 [-] e_(stat)(Eu) ? Statistical error on Eu 490-493 F4.2 [-] e_(noise)(Eu) ? Error inferred through noise on Eu -------------------------------------------------------------------------------- Acknowledgements: Moritz Reichert, mreichert(at)theorie.ikp.physik.tu-darmstadt.de References: Skuladottir et al., Paper I 2019A&A...631A.171S 2019A&A...631A.171S, Cat. J/A+A/631/A171 Skuladottir et al., Paper II 2020A&A...634A..84S 2020A&A...634A..84S
(End) Moritz Reichert [Darmstadt], Patricia Vannier [CDS] 13-Aug-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line