J/A+A/643/A12       Chemical abundances of 6 open cluster stars  (Casali+, 2020)

Stellar Population Astrophysics (SPA) with TNG. The old open clusters Collinder 350, Gulliver 51, NGC 7044, Ruprecht 171. Casali G., Magrini L., Frasca A., Bragaglia A., Catanzaro G., D'Orazi V., Sordo R., Carretta E., Origlia L., Andreuzzi G., Fu X., Vallenari A. <Astron. Astrophys. 643, A12 (2020)> =2020A&A...643A..12C 2020A&A...643A..12C (SIMBAD/NED BibCode)
ADC_Keywords: Clusters, open ; Abundances Keywords: stars: abundances - open clusters and associations: general - Galaxy: evolution - Galaxy: disc Abstract: Open clusters are excellent tracers of the chemical evolution of the Galactic disc. The spatial distribution of their elemental abundances, through the analysis of high-quality and high-resolution spectra, provides insight into the chemical evolution and mechanisms of element nucleosynthesis in regions characterised by different conditions (e.g. star formation efficiency and metallicity). In the framework of the Stellar Population Astrophysics (SPA) project, we present new observations and spectral analysis of four sparsely studied open clusters located in the solar neighbourhood, namely Collinder 350, Gulliver 51, NGC 7044, and Ruprecht 171. We exploit the HARPS-N spectrograph at the TNG telescope to acquire high-resolution optical spectra for 15 member stars of four clusters. We derive stellar parameters (Teff, logg, [Fe/H] and {xi) using both the equivalent width (EW) analysis and the spectral fitting technique. We compute elemental abundances for light, α-, iron-peak, and n-capture elements using the EW measurement approach. We investigate the origin of the correlation between metallicity and stellar parameters derived with the EW method for the coolest stars of the sample (Teff<4300K). The correlation is likely due to the challenging continuum setting and to a general inaccuracy of model atmospheres used to reproduce the conditions of very cool giant stars. We locate the properties of our clusters in the radial distributions of metallicity and abundance ratios, comparing our results with clusters from the Gaia-ESO and APOGEE surveys. We present the [X/Fe]-[Fe/H] and [X/Fe]-RGC trends for elements in common between the two surveys. Finally, we derive the C and Li abundances as a function of the evolutionary phase and compare them with theoretical models. The SPA survey, with its high-resolution spectra, allows us to fully characterise the chemistry of nearby clusters. With a single set of spectra, we provide chemical abundances for a variety of chemical elements, which are comparable to those obtained in two of the largest surveys combined. The metallicities and abundance ratios of our clusters fit very well in the radial distributions defined by the recent literature, reinforcing the importance of star clusters to outline the spatial distribution of abundances in our Galaxy. Moreover, the abundances of C and Li, modified by stellar evolution during the giant phase, agree with evolutionary prescriptions (rotation-induced mixing) for their masses and metallicities. Description: The Table 8 contains the chemical abundances obtained through the EW-spectral analysis (DOOp-FAMA tools). They are determined from high-resolution stellar spectra collected by the HARPS-N spectrograph (R=115,000 over a 390-680nm wavelength range, Cosentino et al. 2014), installed on the Italian Telescopio Nazionale Galileo (TNG) at the Observatorio del Roque de los Muchachos. This sample of spectra is part of the SPA project. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file stars.dat 60 6 Sample stars table8.dat 334 6 Elemental abundances of each star with Teff>4300K, in the form 12+log(X/H) -------------------------------------------------------------------------------- Byte-by-byte Description of file: stars.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Star Star Identification 10- 19 F10.6 deg RAdeg Right ascension (J2000) 21- 30 F10.6 deg DEdeg Declination (J2000) 33- 60 A28 --- SName Simbad name -------------------------------------------------------------------------------- Byte-by-byte Description of file: table8.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Star Star Identification 10- 19 F10.6 deg RAdeg Right ascension (J2000) 21- 30 F10.6 deg DEdeg Declination (J2000) 32- 35 F4.2 --- FeI Abundance A(FeI) (1) 37- 41 F5.3 --- e_FeI Error on A(FeI) 43- 45 I3 --- o_FeI Number of FeI lines 47- 50 F4.2 --- FeII Abundance A(FeII) (1) 52- 56 F5.3 --- e_FeII Error on A(FeII) 58- 59 I2 --- o_FeII Number of FeII lines 61- 64 F4.2 --- AlI Abundance A(AlI) (1) 66- 70 F5.3 --- e_AlI Error on A(AlI) 72 I1 --- o_AlI Number of AlI lines 74- 77 F4.2 --- CI Abundance A(CI) (1) 79- 83 F5.3 --- e_CI Error on A(CI) 85- 87 F3.1 --- o_CI Number of CI lines 89- 92 F4.2 --- CaI Abundance A(CaI) (1) 94- 98 F5.3 --- e_CaI Error on A(CaI) 100-101 I2 --- o_CaI Number of CaI lines 103-106 F4.2 --- CeII Abundance A(CeII) (1) 108-112 F5.3 --- e_CeII Error on A(CeII) 114 I1 --- o_CeII Number of CeII lines 116-119 F4.2 --- CoI Abundance A(CoI) (1) 121-125 F5.3 --- e_CoI Error on A(CoI) 127-128 I2 --- o_CoI Number of CoI lines 130-133 F4.2 --- CrI Abundance A(CrI) (1) 135-139 F5.3 --- e_CrI Error on A(CrI) 141-142 I2 --- o_CrI Number of CrI lines 144-147 F4.2 --- EuII ? Abundance A(EuII) (1) 149-153 F5.3 --- e_EuII ? Error on A(EuII) 155-157 F3.1 --- o_EuII ? Number of EuII lines 159-162 F4.2 --- LaII Abundance A(LaII) (1) 164-168 F5.3 --- e_LaII Error on A(LaII) 170 I1 --- o_LaII Number of LaII lines 172-175 F4.2 --- LiI ? Abundance A(LiI) (1) 177-181 F5.3 --- e_LiI ? Error on A(LiI) 183-185 F3.1 --- o_LiI ? Number of LiI lines 187-190 F4.2 --- MgI Abundance A(MgI) (1) 192-196 F5.3 --- e_MgI Error on A(MgI) 198 I1 --- o_MgI Number of MgI lines 200-203 F4.2 --- NaI Abundance A(NaI) (1) 205-209 F5.3 --- e_NaI Error on A(NaI) 211 I1 --- o_NaI Number of NaI lines 213-216 F4.2 --- NiI Abundance A(NiI) (1) 218-222 F5.3 --- e_NiI Error on A(NiI) 224-225 I2 --- o_NiI Number of NiI lines 227-230 F4.2 --- ScII Abundance A(ScII) (1) 232-236 F5.3 --- e_ScII Error on A(ScII) 238 I1 --- o_ScII Number of ScII lines 240-243 F4.2 --- SiI Abundance A(SiI) (1) 245-249 F5.3 --- e_SiI Error on A(SiI) 251-252 I2 --- o_SiI Number of SiI lines 254-257 F4.2 --- TiI Abundance A(TiI) (1) 259-263 F5.3 --- e_TiI Error on A(TiI) 265-266 I2 --- o_TiI Number of TiI lines 268-271 F4.2 --- TiII Abundance A(TiII) (1) 273-277 F5.3 --- e_TiII Error on A(TiII) 279-280 I2 --- o_TiII Number of TiII lines 282-285 F4.2 --- VI Abundance A(VI) (1) 287-291 F5.3 --- e_VI Error on A(VI) 293-294 I2 --- o_VI Number of VI lines 296-299 F4.2 --- YII Abundance A(YII) (1) 301-305 F5.3 --- e_YII Error on A(YII) 307-308 I2 --- o_YII Number of YII lines 310-313 F4.2 --- ZrI Abundance A(ZrI) (1) 315-319 F5.3 --- e_ZrI Error on A(ZrI) 321 I1 --- o_ZrI Number of ZrI lines 323-326 F4.2 --- ZrII Abundance A(ZrII) (1) 328-332 F5.3 --- e_ZrII Error on A(ZrII) 334 I1 --- o_ZrII Number of ZrII lines -------------------------------------------------------------------------------- Note (1): in the form 12+log(X/H). -------------------------------------------------------------------------------- Acknowledgements: Giada Casali, giada.casali(at)inaf.it References: Origlia et al., Paper I 2019A&A...629A.117O 2019A&A...629A.117O, Alicante 7 and Alicante 10 Ryde et al., Paper II 2019A&A...631L...3R 2019A&A...631L...3R, GIANO-B FRASCA et al., Paper III 2019A&A...632A..16F 2019A&A...632A..16F, ASCC 123 D'Orazi et al., Paper IV 2020A&A...633A..38D 2020A&A...633A..38D, M 44, Cat. J/A+A/633/A38
(End) G. Casali [Univ. Florence, INAF-OAA], P. Vannier [CDS] 15-Sep-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line