J/A+A/649/A21        ATLASGAL deuteration of ammonia             (Wienen+, 2021)
ATLASGAL-selected massive clumps in the inner Galaxy.
IX. Deuteration of ammonia.
    Wienen M., Wyrowski F., Walmsley C.M., Csengeri T., Pillai T.,
    Giannetti A., Menten K.M.
    <Astron. Astrophys. 649, A21 (2021)>
    =2021A&A...649A..21W 2021A&A...649A..21W        (SIMBAD/NED BibCode)
ADC_Keywords: Interstellar medium; Millimetric/submm sources ; Radio lines
Keywords: surveys - submillimeter - radio lines: ISM - ISM: molecules -
          stars: massive - stars: formation
Abstract:
    Deuteration has been used as a tracer of the evolutionary phases of
    low- and high-mass star formation. The APEX Telescope Large Area
    Survey (ATLASGAL) provides an important repository for a detailed
    statistical study of massive star-forming clumps in the inner Galactic
    disc at different evolutionary phases.
    We study the amount of deuteration using NH2D in a representative
    sample of high-mass clumps discovered by the ATLASGAL survey covering
    various evolutionary phases of massive star formation. The deuterium
    fraction of NH3 is derived from the NH2D 111-101ortho
    transition at ∼86GHz and NH2D 111-101para line at ∼110GHz.
    This is refined for the first time by measuring the NH2D excitation
    temperature directly with the NH2D 212-202para transition at
    ∼74GHz. Any variation of NH3 deuteration and ortho-to-para ratio with
    the evolutionary sequence is analysed.
    Unbiased spectral line surveys at 3mm were conducted towards ATLASGAL
    clumps between 85 and 93GHz with the Mopra telescope and from 84 to
    115GHz using the IRAM 30m telescope. A subsample was followed up in
    the NH2D transition at 74GHz with the IRAM 30m telescope. We
    determined the deuterium fractionation from the column density ratio
    of NH2D and NH3 and measured the NH2D excitation temperature for
    the first time from the simultaneous modelling of the 74 and 110GHz
    line using MCWeeds. We searched for trends in NH3 deuteration with
    the evolutionary sequence of massive star formation. We derived the
    column density ratio from the 86 and 110GHz transitions as an
    estimate of the NH2D ortho-to-para ratio.
    We find a large range of the NH2D to NH3 column density ratio up
    to 1.6±0.7 indicating a high degree of NH3 deuteration in a
    subsample of the clumps. Our analysis yields a clear difference
    between NH3 and NH2D rotational temperatures for a fraction. We
    therefore advocate observation of the NH2D transitions at 74 and
    110GHz simultaneously to determine the NH2D temperature directly. We
    determine a median ortho-to-para column density ratio of 3.7±1.2.
    The high detection rate of NH2D confirms a high deuteration
    previously found in massive star-forming clumps. Using the excitation
    temperature of NH2D instead of NH3 is needed to avoid an
    overestimation of deuteration. We measure a higher detection rate of
    NH2D in sources at early evolutionary stages. The deuterium
    fractionation shows no correlation with evolutionary tracers such as
    the NH3 (1,1) line width, or rotational temperature.
Description:
    The NH2D transitions at 86GHz and 110GHz of subsamples from the
    ATLASGAL survey, which reaches a Galactic longitude of ±60deg and
    latitude of ±1.5deg, were observed within two unbiased spectral-line
    follow-ups. We used the Mopra 22m telescope to measure the NH2D
    111-101 ortho transition at ∼86GHz of a flux-limited sample in the
    fourth quadrant. Ortho NH2D as well as the NH2D 111-101 para
    line at ∼110GHz were observed in the first quadrant using the IRAM 30m
    telescope. In addition, we measured the NH2D 212-202 para
    transition at ∼74GHz toward a subsample of the 24 brightest clumps in
    deuterated ammonia. The NH2D spectra at 74, 86, 110GHz are shown and
    line parameters are derived for 390 ATLASGAL sources. The optical
    depth, LSR velocity, linewidth, main beam brightness temperature and
    column density of each clump were determined. We measured the NH2D
    excitation temperature from the simultaneous modelling of the 74 and
    110 GHz transitions using MCWeeds and show the comparison to the NH3
    rotational temperature derived for ATLASGAL sources by Wienen et al.
    (2012A&A...544A.146W 2012A&A...544A.146W, Cat. J/A+A/544/A146). Furthermore, the deuterium
    fractionation is calculated from the NH2D to NH3 column density
    ratio as well as the ortho-to-para column density ratio. We show
    correlation plots of the NH3 deuteration and the ortho-to-para ratio
    with evolutionary tracers.
File Summary:
--------------------------------------------------------------------------------
 FileName      Lrecl  Records   Explanations
--------------------------------------------------------------------------------
ReadMe            80        .   This file
table2.dat        93      264   Source positions, properties of NH2D at 86GHz
                                 and NH3 rotational temperature
table3.dat        64      108   Line parameters of NH2D at 110GHz
table4.dat        84       23   Properties of NH2D line at 74GHz
table5.dat        66      264   Column densities and deuteration of
                                 NH3 and NH2D at 86GHz
table6.dat        36       53   Column density of NH2D at 110GHz and
                                 ortho-to-para ratio
table9.dat        38       57   Velocity integrated intensity of NH2D at 86GHz
                                 and 110GHz and the ratio of both integrated
                                 intensities
--------------------------------------------------------------------------------
See also:
 J/A+A/570/A65  : ATLASGAL massive clumps CO depletion (Giannetti+, 2014)
 J/A+A/586/A149 : SiO in ATLASGAL-selected massive clumps (Csengeri+, 2016)
 J/A+A/599/A139 : ATLASGAL massive clumps dust characterization (Koenig+, 2017)
 J/A+A/602/A37  : Millimeter RRL in ATLASGAL-selected massive clumps (Kim+ 2017)
 J/A+A/603/A33  : Temperature evolution in massive clumps (Giannetti+, 2017)
 J/A+A/611/A6   : ATLASGAL massive clumps H2CO data (Tang+, 2018)
 J/A+A/622/A135 : Mid-J CO emission of Top100 clumps (Navarete+, 2019)
 J/A+A/644/A160 : ATLASGAL-selected massive clumps. Chemistry of PDR (Kim+ 2020)
 J/A+A/544/A146 : ATLASGAL cold high-mass clumps with NH3 (Wienen+, 2012)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label     Explanations
--------------------------------------------------------------------------------
   1- 12  A12   ---     Name      Source Name (GLLL.ll+B.bb)
  14- 15  I2    h       RAh       Right Ascension (J2000)
  17- 18  I2    min     RAm       Right Ascension (J2000)
  20- 24  F5.2  s       RAs       Right Ascension (J2000)
      26  A1    ---     DE-       Declination sign (J2000)
  27- 28  I2    deg     DEd       Declination (J2000)
  30- 31  I2    arcmin  DEm       Declination (J2000)
  33- 36  F4.1  arcsec  DEs       Declination (J2000)
  38- 41  F4.2  ---     tauNH3    Optical depth of the NH3 (1,1) line
  43- 47  F5.2  ---   e_tauNH3    Error of the optical depth
      48  A1    ---   n_tauNH3    [*] Note on tauNH3 (1)
  50- 56  F7.2  km/s    vLSR      Velocity of NH2D line at 86GHz
  58- 61  F4.2  km/s  e_vLSR      Error of the velocity
  63- 66  F4.2  km/s    Deltav    Linewidth
  68- 71  F4.2  km/s  e_Deltav    Error of the linewidth
  73- 76  F4.2  K       TMB       Main beam brightness temperature
  78- 81  F4.2  K     e_TMB       Error of main beam brightness temperature
  83- 87  F5.2  K       Trot      ?=99.99 rotational temperature between the
                                   NH3 (1,1) and (2,2) inversion transition
  89- 93  F5.2  K     e_Trot      ?=99.99 Error of rotational temperature
--------------------------------------------------------------------------------
Note (1): * for Sources without detected hyperfine structure or no reliable
  derivation of the optical depth due to low S/N (see Sect. 3.3).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label      Explanations
--------------------------------------------------------------------------------
   1- 12  A12   ---     Name       Source Name (GLLL.ll+B.bb)
      13  A1    ---   m_Name       [AB] Multiplicity index on Name
  15- 16  I2    h       RAh        Right Ascension (J2000)
  18- 19  I2    min     RAm        Right Ascension (J2000)
  21- 25  F5.2  s       RAs        Right Ascension (J2000)
      27  A1    ---     DE-        Declination sign (J2000)
  28- 29  I2    deg     DEd        Declination (J2000)
  31- 32  I2    arcmin  DEm        Declination (J2000)
  34- 37  F4.1  arcsec  DEs        Declination (J2000)
  39- 44  F6.2  km/s    vLSR       Velocity of NH2D line at 110GHz
  46- 49  F4.2  km/s  e_vLSR       Error of the velocity
  51- 54  F4.2  km/s    Deltav110  Linewidth
  56- 59  F4.2  K       TMB110     Main beam brightness temperature
  61- 64  F4.2  K     e_TMB110     Error of main beam brightness temperature
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label        Explanations
--------------------------------------------------------------------------------
   1- 12  A12   ---     Name         Source Name (GLLL.ll+B.bb)
  14- 15  I2    h       RAh          Right Ascension (J2000)
  17- 18  I2    min     RAm          Right Ascension (J2000)
  20- 24  F5.2  s       RAs          Right Ascension (J2000)
      26  A1    ---     DE-          Declination sign (J2000)
  27- 28  I2    deg     DEd          Declination (J2000)
  30- 31  I2    arcmin  DEm          Declination (J2000)
  33- 36  F4.1  arcsec  DEs          Declination (J2000)
  38- 43  F6.2  km/s    vLSR74       Velocity of NH2D line at 74GHz
  45- 48  F4.2  km/s  E_vLSR74       ?=- Error of the velocity (upper value)
  51- 54  F4.2  km/s  e_vLSR74       ?=- Error of the velocity (lower value)
  56- 58  F3.1  km/s    DeltavLSR74  ?=- Linewidth
  60- 62  F3.1  km/s  E_DeltavLSR74  ?=- Error of the linewidth (upper value)
  65- 67  F3.1  km/s  e_DeltavLSR74  ?=- Error of the linewidth (lower value)
  69- 73  F5.2  km/s    TrotNH2D     Rotational temperature between the
                                      NH2D 111-101 line and 212-202
                                      transition
  75- 78  F4.1  km/s  E_TrotNH2D     ?=- Error of the rotational temperature
                                      (upper value)
  81- 84  F4.1  km/s  e_TrotNH2D     ?=- Error of the rotational temperature
                                      (lower value)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
   Bytes Format Units      Label         Explanations
--------------------------------------------------------------------------------
   1- 12  A12   ---        Name          Source Name (GLLL.ll+B.bb)
  14- 18  F5.2 10+15cm-2   NNH3          ?=- NH3 column density
  20- 23  F4.2 10+15cm-2 e_NNH3          ?=- Error of NH3 column density
  25- 28  F4.2  ---        eta           ?=- Beam filling factor
  30- 33  F4.2  ---      e_eta           ?=- Error of the beam filling factor
  35- 40  F6.2 10+13cm-2   NNH2D(86)     ?=- Column density of NH2D at 86GHz
  42- 47  F6.2 10+13cm-2 e_NNH2D(86)     ?=- Error of the NH2D column density
  49- 52  F4.2  ---        [NH2D/NH3]    ?=- Deuteration
  54- 58  F5.2  ---      e_[NH2D/NH3]    ?=- Error of deuteration
  60- 62  F3.1  K.km/s     TMBdv(86)     Velocity integrated intensity of
                                          NH2D at 86GHz
  64- 66  F3.1  K.km/s   e_TMBdv(86)     Error of velocity integrated intensity
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
   Bytes Format Units      Label          Explanations
--------------------------------------------------------------------------------
   1- 12  A12   ---        Name           Source Name (GLLL.ll+B.bb)
  14- 18  F5.2 10+13cm-2   NNH2D(110)     Column density of NH2D at 110GHz
  20- 24  F5.2 10+13cm-2 e_NNH2D(110)     Error of the NH2D column density
  26- 30  F5.2  ---        No(86)/Np(110) Column density ratio of ortho to para
                                           NH2D, Northo(86GHz)/Npara(110GHz)
  32- 36  F5.2  ---      e_No(86)/Np(110) Error of column density ratio
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table9.dat
--------------------------------------------------------------------------------
   Bytes Format Units    Label                Explanations
--------------------------------------------------------------------------------
   1- 12  A12   ---      Name                 Source Name
  14- 16  F3.1  K.km/s   TMBdv(86)            Velocity integrated intensity of
                                               NH2D at 86GHz
  18- 20  F3.1  K.km/s e_TMBdv(86)            Error of velocity integrated
                                               intensity of ortho NH2D
  22- 24  F3.1  K.km/s   TMBdv(110)           Velocity integrated intensity of
                                               NH2D at 110GHz
  26- 28  F3.1  K.km/s e_TMBdv(110)           Error of velocity integrated
                                               intensity of para NH2D
  30- 33  F4.1  ---      TMBdv(86)/TMBdv(110) Ratio of ortho to para NH2D
                                               velocity integrated intensity
  35- 38  F4.1  ---    e_TMBdv(86)/TMBdv(110) Error of velocity integrated
                                               intensity ratio
--------------------------------------------------------------------------------
Acknowledgements:
   Marion Wienen, mwienen(at)mpifr-bonn.mpg.de
References:
   Giannetti et al., Paper I    2014A&A...570A..65G 2014A&A...570A..65G, Cat. J/A+A/570/A65
   Csengeri et al.,  Paper II   2016A&A...586A.149C 2016A&A...586A.149C, Cat. J/A+A/586/A149
   Konig et al.,     Paper III  2017A&A...599A.139K 2017A&A...599A.139K, Cat. J/A+A/599/A139
   Kim et al.,       Paper IV   2017A&A...602A..37K 2017A&A...602A..37K, Cat. J/A+A/502/A37
   Giannetti et al., Paper V    2017A&A...603A..33G 2017A&A...603A..33G, Cat. J/A+A/603/A33
   Tang et al.,      Paper VI   2018A&A...611A...6T 2018A&A...611A...6T, Cat. J/A+A/611/A6
   Navarete et al.,  Paper VII  2019A&A...622A.135N 2019A&A...622A.135N, Cat. J/A+A/622/A135
   Kim et al.,       Paper VIII 2020A&A...644A.160K 2020A&A...644A.160K, Cat. J/A+A/644/A160
   Schuller et al.,             2009A&A...504..415S 2009A&A...504..415S,
    ATLASGAL - the APEX telescope large area survey of the galaxy at 870µm.
(End)         Marion Wienen [MPIfR, Bonn], Patricia Vannier [CDS]    22-Apr-2021