J/A+A/649/A21        ATLASGAL deuteration of ammonia             (Wienen+, 2021)

ATLASGAL-selected massive clumps in the inner Galaxy. IX. Deuteration of ammonia. Wienen M., Wyrowski F., Walmsley C.M., Csengeri T., Pillai T., Giannetti A., Menten K.M. <Astron. Astrophys. 649, A21 (2021)> =2021A&A...649A..21W 2021A&A...649A..21W (SIMBAD/NED BibCode)
ADC_Keywords: Interstellar medium; Millimetric/submm sources ; Radio lines Keywords: surveys - submillimeter - radio lines: ISM - ISM: molecules - stars: massive - stars: formation Abstract: Deuteration has been used as a tracer of the evolutionary phases of low- and high-mass star formation. The APEX Telescope Large Area Survey (ATLASGAL) provides an important repository for a detailed statistical study of massive star-forming clumps in the inner Galactic disc at different evolutionary phases. We study the amount of deuteration using NH2D in a representative sample of high-mass clumps discovered by the ATLASGAL survey covering various evolutionary phases of massive star formation. The deuterium fraction of NH3 is derived from the NH2D 111-101ortho transition at ∼86GHz and NH2D 111-101para line at ∼110GHz. This is refined for the first time by measuring the NH2D excitation temperature directly with the NH2D 212-202para transition at ∼74GHz. Any variation of NH3 deuteration and ortho-to-para ratio with the evolutionary sequence is analysed. Unbiased spectral line surveys at 3mm were conducted towards ATLASGAL clumps between 85 and 93GHz with the Mopra telescope and from 84 to 115GHz using the IRAM 30m telescope. A subsample was followed up in the NH2D transition at 74GHz with the IRAM 30m telescope. We determined the deuterium fractionation from the column density ratio of NH2D and NH3 and measured the NH2D excitation temperature for the first time from the simultaneous modelling of the 74 and 110GHz line using MCWeeds. We searched for trends in NH3 deuteration with the evolutionary sequence of massive star formation. We derived the column density ratio from the 86 and 110GHz transitions as an estimate of the NH2D ortho-to-para ratio. We find a large range of the NH2D to NH3 column density ratio up to 1.6±0.7 indicating a high degree of NH3 deuteration in a subsample of the clumps. Our analysis yields a clear difference between NH3 and NH2D rotational temperatures for a fraction. We therefore advocate observation of the NH2D transitions at 74 and 110GHz simultaneously to determine the NH2D temperature directly. We determine a median ortho-to-para column density ratio of 3.7±1.2. The high detection rate of NH2D confirms a high deuteration previously found in massive star-forming clumps. Using the excitation temperature of NH2D instead of NH3 is needed to avoid an overestimation of deuteration. We measure a higher detection rate of NH2D in sources at early evolutionary stages. The deuterium fractionation shows no correlation with evolutionary tracers such as the NH3 (1,1) line width, or rotational temperature. Description: The NH2D transitions at 86GHz and 110GHz of subsamples from the ATLASGAL survey, which reaches a Galactic longitude of ±60deg and latitude of ±1.5deg, were observed within two unbiased spectral-line follow-ups. We used the Mopra 22m telescope to measure the NH2D 111-101 ortho transition at ∼86GHz of a flux-limited sample in the fourth quadrant. Ortho NH2D as well as the NH2D 111-101 para line at ∼110GHz were observed in the first quadrant using the IRAM 30m telescope. In addition, we measured the NH2D 212-202 para transition at ∼74GHz toward a subsample of the 24 brightest clumps in deuterated ammonia. The NH2D spectra at 74, 86, 110GHz are shown and line parameters are derived for 390 ATLASGAL sources. The optical depth, LSR velocity, linewidth, main beam brightness temperature and column density of each clump were determined. We measured the NH2D excitation temperature from the simultaneous modelling of the 74 and 110 GHz transitions using MCWeeds and show the comparison to the NH3 rotational temperature derived for ATLASGAL sources by Wienen et al. (2012A&A...544A.146W 2012A&A...544A.146W, Cat. J/A+A/544/A146). Furthermore, the deuterium fractionation is calculated from the NH2D to NH3 column density ratio as well as the ortho-to-para column density ratio. We show correlation plots of the NH3 deuteration and the ortho-to-para ratio with evolutionary tracers. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 93 264 Source positions, properties of NH2D at 86GHz and NH3 rotational temperature table3.dat 64 108 Line parameters of NH2D at 110GHz table4.dat 84 23 Properties of NH2D line at 74GHz table5.dat 66 264 Column densities and deuteration of NH3 and NH2D at 86GHz table6.dat 36 53 Column density of NH2D at 110GHz and ortho-to-para ratio table9.dat 38 57 Velocity integrated intensity of NH2D at 86GHz and 110GHz and the ratio of both integrated intensities -------------------------------------------------------------------------------- See also: J/A+A/570/A65 : ATLASGAL massive clumps CO depletion (Giannetti+, 2014) J/A+A/586/A149 : SiO in ATLASGAL-selected massive clumps (Csengeri+, 2016) J/A+A/599/A139 : ATLASGAL massive clumps dust characterization (Koenig+, 2017) J/A+A/602/A37 : Millimeter RRL in ATLASGAL-selected massive clumps (Kim+ 2017) J/A+A/603/A33 : Temperature evolution in massive clumps (Giannetti+, 2017) J/A+A/611/A6 : ATLASGAL massive clumps H2CO data (Tang+, 2018) J/A+A/622/A135 : Mid-J CO emission of Top100 clumps (Navarete+, 2019) J/A+A/644/A160 : ATLASGAL-selected massive clumps. Chemistry of PDR (Kim+ 2020) J/A+A/544/A146 : ATLASGAL cold high-mass clumps with NH3 (Wienen+, 2012) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name Source Name (GLLL.ll+B.bb) 14- 15 I2 h RAh Right Ascension (J2000) 17- 18 I2 min RAm Right Ascension (J2000) 20- 24 F5.2 s RAs Right Ascension (J2000) 26 A1 --- DE- Declination sign (J2000) 27- 28 I2 deg DEd Declination (J2000) 30- 31 I2 arcmin DEm Declination (J2000) 33- 36 F4.1 arcsec DEs Declination (J2000) 38- 41 F4.2 --- tauNH3 Optical depth of the NH3 (1,1) line 43- 47 F5.2 --- e_tauNH3 Error of the optical depth 48 A1 --- n_tauNH3 [*] Note on tauNH3 (1) 50- 56 F7.2 km/s vLSR Velocity of NH2D line at 86GHz 58- 61 F4.2 km/s e_vLSR Error of the velocity 63- 66 F4.2 km/s Deltav Linewidth 68- 71 F4.2 km/s e_Deltav Error of the linewidth 73- 76 F4.2 K TMB Main beam brightness temperature 78- 81 F4.2 K e_TMB Error of main beam brightness temperature 83- 87 F5.2 K Trot ?=99.99 rotational temperature between the NH3 (1,1) and (2,2) inversion transition 89- 93 F5.2 K e_Trot ?=99.99 Error of rotational temperature -------------------------------------------------------------------------------- Note (1): * for Sources without detected hyperfine structure or no reliable derivation of the optical depth due to low S/N (see Sect. 3.3). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name Source Name (GLLL.ll+B.bb) 13 A1 --- m_Name [AB] Multiplicity index on Name 15- 16 I2 h RAh Right Ascension (J2000) 18- 19 I2 min RAm Right Ascension (J2000) 21- 25 F5.2 s RAs Right Ascension (J2000) 27 A1 --- DE- Declination sign (J2000) 28- 29 I2 deg DEd Declination (J2000) 31- 32 I2 arcmin DEm Declination (J2000) 34- 37 F4.1 arcsec DEs Declination (J2000) 39- 44 F6.2 km/s vLSR Velocity of NH2D line at 110GHz 46- 49 F4.2 km/s e_vLSR Error of the velocity 51- 54 F4.2 km/s Deltav110 Linewidth 56- 59 F4.2 K TMB110 Main beam brightness temperature 61- 64 F4.2 K e_TMB110 Error of main beam brightness temperature -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name Source Name (GLLL.ll+B.bb) 14- 15 I2 h RAh Right Ascension (J2000) 17- 18 I2 min RAm Right Ascension (J2000) 20- 24 F5.2 s RAs Right Ascension (J2000) 26 A1 --- DE- Declination sign (J2000) 27- 28 I2 deg DEd Declination (J2000) 30- 31 I2 arcmin DEm Declination (J2000) 33- 36 F4.1 arcsec DEs Declination (J2000) 38- 43 F6.2 km/s vLSR74 Velocity of NH2D line at 74GHz 45- 48 F4.2 km/s E_vLSR74 ?=- Error of the velocity (upper value) 51- 54 F4.2 km/s e_vLSR74 ?=- Error of the velocity (lower value) 56- 58 F3.1 km/s DeltavLSR74 ?=- Linewidth 60- 62 F3.1 km/s E_DeltavLSR74 ?=- Error of the linewidth (upper value) 65- 67 F3.1 km/s e_DeltavLSR74 ?=- Error of the linewidth (lower value) 69- 73 F5.2 km/s TrotNH2D Rotational temperature between the NH2D 111-101 line and 212-202 transition 75- 78 F4.1 km/s E_TrotNH2D ?=- Error of the rotational temperature (upper value) 81- 84 F4.1 km/s e_TrotNH2D ?=- Error of the rotational temperature (lower value) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name Source Name (GLLL.ll+B.bb) 14- 18 F5.2 10+15cm-2 NNH3 ?=- NH3 column density 20- 23 F4.2 10+15cm-2 e_NNH3 ?=- Error of NH3 column density 25- 28 F4.2 --- eta ?=- Beam filling factor 30- 33 F4.2 --- e_eta ?=- Error of the beam filling factor 35- 40 F6.2 10+13cm-2 NNH2D(86) ?=- Column density of NH2D at 86GHz 42- 47 F6.2 10+13cm-2 e_NNH2D(86) ?=- Error of the NH2D column density 49- 52 F4.2 --- [NH2D/NH3] ?=- Deuteration 54- 58 F5.2 --- e_[NH2D/NH3] ?=- Error of deuteration 60- 62 F3.1 K.km/s TMBdv(86) Velocity integrated intensity of NH2D at 86GHz 64- 66 F3.1 K.km/s e_TMBdv(86) Error of velocity integrated intensity -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name Source Name (GLLL.ll+B.bb) 14- 18 F5.2 10+13cm-2 NNH2D(110) Column density of NH2D at 110GHz 20- 24 F5.2 10+13cm-2 e_NNH2D(110) Error of the NH2D column density 26- 30 F5.2 --- No(86)/Np(110) Column density ratio of ortho to para NH2D, Northo(86GHz)/Npara(110GHz) 32- 36 F5.2 --- e_No(86)/Np(110) Error of column density ratio -------------------------------------------------------------------------------- Byte-by-byte Description of file: table9.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name Source Name 14- 16 F3.1 K.km/s TMBdv(86) Velocity integrated intensity of NH2D at 86GHz 18- 20 F3.1 K.km/s e_TMBdv(86) Error of velocity integrated intensity of ortho NH2D 22- 24 F3.1 K.km/s TMBdv(110) Velocity integrated intensity of NH2D at 110GHz 26- 28 F3.1 K.km/s e_TMBdv(110) Error of velocity integrated intensity of para NH2D 30- 33 F4.1 --- TMBdv(86)/TMBdv(110) Ratio of ortho to para NH2D velocity integrated intensity 35- 38 F4.1 --- e_TMBdv(86)/TMBdv(110) Error of velocity integrated intensity ratio -------------------------------------------------------------------------------- Acknowledgements: Marion Wienen, mwienen(at)mpifr-bonn.mpg.de References: Giannetti et al., Paper I 2014A&A...570A..65G 2014A&A...570A..65G, Cat. J/A+A/570/A65 Csengeri et al., Paper II 2016A&A...586A.149C 2016A&A...586A.149C, Cat. J/A+A/586/A149 Konig et al., Paper III 2017A&A...599A.139K 2017A&A...599A.139K, Cat. J/A+A/599/A139 Kim et al., Paper IV 2017A&A...602A..37K 2017A&A...602A..37K, Cat. J/A+A/502/A37 Giannetti et al., Paper V 2017A&A...603A..33G 2017A&A...603A..33G, Cat. J/A+A/603/A33 Tang et al., Paper VI 2018A&A...611A...6T 2018A&A...611A...6T, Cat. J/A+A/611/A6 Navarete et al., Paper VII 2019A&A...622A.135N 2019A&A...622A.135N, Cat. J/A+A/622/A135 Kim et al., Paper VIII 2020A&A...644A.160K 2020A&A...644A.160K, Cat. J/A+A/644/A160 Schuller et al., 2009A&A...504..415S 2009A&A...504..415S, ATLASGAL - the APEX telescope large area survey of the galaxy at 870µm.
(End) Marion Wienen [MPIfR, Bonn], Patricia Vannier [CDS] 22-Apr-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line