J/A+A/652/A23       HII-chi-mistry-IR. Abundances   (Fernandez-Ontiveros+, 2021)

Measuring chemical abundances with infrared nebular lines: HII-CHI-MISTRY-IR. Fernandez-Ontiveros J.A., Perez-Montero E., Vilchez J.M., Amorin R., Spinoglio L. <Astron. Astrophys. 652, A23 (2021)> =2021A&A...652A..23F 2021A&A...652A..23F (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, IR ; Galaxies, spectra ; Spectra, infrared ; Abundances Keywords: ISM: abundances - galaxies: abundances - infrared: ISM - techniques: spectroscopic Abstract: We provide a new method to derive heavy element abundances based on the unique suite of nebular lines in the mid- to far-infrared (IR) range. Using grids of photo-ionisation models that cover a wide range in O/H and N/O abundances, and ionisation parameter, our code HII-CHI-MISTRY-IR (HCm-IR) provides model-based abundances based on extinction free and temperature insensitive tracers, two significant advantages over optical diagnostics. The code is probed using a sample of 56 galaxies observed with Spitzer and Herschel covering a wide range in metallicity, 7.2~<12+log(O/H)~<8.9. The IR model-based metallicities obtained are robust within a scatter of 0.03dex when the hydrogen recombination lines, which are typically faint transitions in the IR range, are not available. When compared to the optical abundances obtained with the direct method,model- based methods, and strong-line calibrations, HCm-IR estimates show a typical dispersion of ∼0.2dex, in line with previous studies comparing IR and optical abundances, a do not introduce a noticeable systematic above 12+log(O/H)>7.6. This accuracy can be achieved using the lines [SIV]10.5um, [SIII]18.7,33.5um, [NeIII]15.6um and [NeII]12.8um. Additionally, HCm-IR provides an independent N/O measurement when the [OIII]52,88um and [NIII]57um transitions are measured, and therefore the derived abundances in this case do not rely on particular assumptions in the N/O ratio. Large uncertainties (∼0.4dex) may affect the abundance determinations of galaxies at sub- or over-solar metallicities when a solar-like N/O ratio is adopted. Finally, the code has been applied to 8 galaxies located at 1.8<z<7.5 with ground-based detections of far-IR lines redshifted in the submm range, revealing solar-like N/O and O/H abundances in agreement with recent studies. Description: Table1: IR line fluxes for our sample of star-forming galaxies. For each galaxy we provide the name, coordinates, redshift, spectral type (dwarf galaxy, starburst, or ULIRG), the mid-IR line fluxes in units of 1.e-17 W/m2, and the references in the literature where these measurements were compiled. The complete version of the table is published in the online version of this paper. Negative values in the table represent 3sigma upper limits. Table 3: HCm-IR abundances compared with optical line-based methods. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 296 66 IR line fluxes for sample of star-forming galaxies table3.dat 118 66 *HCm-IR abundances compared with optical line-based methods -------------------------------------------------------------------------------- Note on table3.dat: Columns 1-3 show the name, chemical abundance, and N/O abundance ratio derived from the IR line fluxes using HCm-IR for our sample of star-forming galaxies. These are compared with the abundance determinations derived from the optical line fluxes using HCm in column 4 and 5, and those reported in the literature in columns 6 favouring the direct method (DM) over the strong-line methods (SL) when available (references in column 7). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 20 A20 --- Name Galaxy name 22- 23 I2 h RAh Right ascension (J2000.0) 25- 26 I2 min RAm Right ascension (J2000.0) 28- 34 F7.4 s RAs Right ascension (J2000.0) 37 A1 --- DE- Declination sign (J2000.0) 38- 39 I2 deg DEd Declination (J2000.0) 41- 42 I2 arcmin DEm Declination (J2000.0) 44- 50 F7.4 arcsec DEs Declination (J2000.0) 53- 61 F9.6 --- z Redshift 63- 67 A5 --- Type Spectral type 74- 76 F3.1 10-17W/m2 bra-4p05 ? Brackett alpha line flux 82- 85 F4.2 10-17W/m2 e_bra-4p05 ? Brackett alpha flux uncertainty 86- 94 F9.8 10-17W/m2 pfa-7p5 ? Pfund alpha line flux 95-102 F8.7 10-17W/m2 e_pfa-7p5 ? Pfund alpha flux uncertainty 104-110 F7.3 10-17W/m2 s4-10p5 ? [SIV]10.5 line flux 113-119 F7.3 10-17W/m2 e_s4-10p5 ? [SIV]10.5 flux uncertainty 123-127 F5.2 10-17W/m2 hua-12p4 ? Humphreys alpha line flux 133-136 F4.2 10-17W/m2 e_hua-12p4 ? Humphreys alpha flux uncertainty 139-146 F8.3 10-17W/m2 n2-12p8 ? [NeII]12.8 line flux 150-155 F6.3 10-17W/m2 e_n2-12p8 ? [NeII]12.8 flux uncertainty 158-164 F7.3 10-17W/m2 n3-15p6 ? [NeIII]15.6 line flux 168-173 F6.3 10-17W/m2 e_n3-15p6 ? [NeIII]15.6 flux uncertainty 175-181 F7.3 10-17W/m2 s3-18p7 ? [SIII]18.7 line flux 184-190 F7.3 10-17W/m2 e_s3-18p7 ? [SIII]18.7 flux uncertainty 191-198 F8.3 10-17W/m2 s3-33p5 ? [SIII]33.5 line flux 201-207 F7.3 10-17W/m2 e_s3-33p5 ? [SIII]33.5 flux uncertainty 208-215 F8.3 10-17W/m2 o3-52 ? [OIII]52 line flux 217-223 F7.3 10-17W/m2 e_o3-52 ? [OIII]52 flux uncertainty 224-231 F8.3 10-17W/m2 n3-57 ? [NIII]57 line flux 232-238 F7.3 10-17W/m2 e_n3-57 ? [NIII]57 flux uncertainty 239-246 F8.3 10-17W/m2 o3-88 ? [OIII]88 line flux 248-253 F6.3 10-17W/m2 e_o3-88 ? [OIII]88 flux uncertainty 254-261 F8.4 10-17W/m2 n2-122 ? [NII]122 line flux 263-269 F7.4 10-17W/m2 e_n2-122 ? [NII]122 flux uncertainty 270-296 A27 --- Refs References (1) -------------------------------------------------------------------------------- Note (1): References for line fluxes as follows: ARM07 = Armus et al., 2007ApJ...656..148A 2007ApJ...656..148A B-S09 = Bernard-Salas et al., 2009ApJS..184..230B 2009ApJS..184..230B, Cat. J/ApJS/184/230 BRE19 = De Breuck et al., 2019A&A...631A.167D 2019A&A...631A.167D, Cat. J/A+A/631/A167 COR15 = Cormier et al., 2015A&A...578A..53C 2015A&A...578A..53C, Cat. J/A+A/578/A53 DAN05 = Dannerbauer et al., 2005A&A...441..999D 2005A&A...441..999D FAR07 = Farrah et al., 2007ApJ...667..149F 2007ApJ...667..149F FER15 = Ferkinhoff et al., 2015ApJ...806..260F 2015ApJ...806..260F FO16 = Fernandez-Ontiveros et al., 2016ApJS..226...19F 2016ApJS..226...19F, Cat. J/ApJS/226/19 G+A09 = Goulding & Alexander, 2009MNRAS.398.1165G 2009MNRAS.398.1165G, Cat. J/MNRAS/398/1165 HC18 = Herrera-Camus et al., 2018ApJ...861...94H 2018ApJ...861...94H, Cat. J/ApJ/861/94 IMA10 = Imanishi et al., 2010ApJ...721.1233I 2010ApJ...721.1233I INA13 = Inami et al., 2013ApJ...777..156I 2013ApJ...777..156I, Cat. J/ApJ/777/156 LAM18 = Lamarche et al., 2018ApJ...867..140L 2018ApJ...867..140L NOV19 = Novak al., 2019ApJ...881...63N 2019ApJ...881...63N PS17 = Pereira-Santaella et al., 2017MNRAS.470.1218P 2017MNRAS.470.1218P RIG18 = Rigopoulou et al., 2018MNRAS.473...20R 2018MNRAS.473...20R TAD19 = Tadaki et al., 2019ApJ...876....1T 2019ApJ...876....1T TW = This work UZG16 = Uzgil et al., 2016ApJ...832..209U 2016ApJ...832..209U VEI09 = Veilleux et al., 2009ApJS..182..628V 2009ApJS..182..628V, Cat. J/ApJS/182/628 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 A19 --- Name Galaxy name 23- 26 F4.2 --- O/H-ir ? IR-based O/H abundance, 12+log(O/H)IR 31- 34 F4.2 --- e_O/H-ir ? IR-based O/H abundance error 37- 41 F5.2 --- N/O-ir ? IR-based N/O abundance, log(N/O)IR 46- 49 F4.2 --- e_N/O-ir ? IR-based N/O abundance error 53- 57 F5.3 --- O/H-hcm ? Optical-based O/H abundance, 12+log(O/H)HCm 62- 66 F5.3 --- e_O/H-hcm ? Optical-based O/H abundance error 70- 74 F5.2 --- N/O-hcm ? Optical-based N/O abundance, log(N/O)HCm 80- 83 F4.2 --- e_N/O-hcm ? Optical-based N/O abundance error 88- 91 F4.2 --- O/H-lit ? Optical-based O/H abundance from literature, 12+log(O/H)lit 97-100 F4.2 --- e_O/H-lit ? Optical-based O/H abundance error from literature 102-106 A5 --- r_O/H-lit Reference for O/H-lit (1) 109-112 F4.2 --- O/H-R ? Optical O/H abundance estimated obtained using Pilyugin & Grebel (2016MNRAS.457.3678P 2016MNRAS.457.3678P) R-calibration, 12+log(O/H)R 115-118 F4.2 --- O/H-S ? Optical O/H abundance estimated obtained using Pilyugin & Grebel (2016MNRAS.457.3678P 2016MNRAS.457.3678P) S-calibration, 12+log(O/H)S -------------------------------------------------------------------------------- Note (1): References for metallicities: ENG08 = Engelbracht et al., 2008ApJ...678..804E 2008ApJ...678..804E KEN11 = Kennicutt et al., 2011PASP..123.1347K 2011PASP..123.1347K MAD13 = Madden et al., 2013PASP..125..600M 2013PASP..125..600M MOU10 = Moustakas et al., 2010ApJS..190..233M 2010ApJS..190..233M, Cat. J/ApJS/190/233 PET93 = Petrosian & Burenkov, 1993A&A...279...21P 1993A&A...279...21P PIL14 = Pilyugin et al., 2014AJ....147..131P 2014AJ....147..131P, Cat. J/AJ/147/131 RUP08 = Rupke et al., 2008ApJ...674..172R 2008ApJ...674..172R, Cat. J/ApJ/674/172 -------------------------------------------------------------------------------- Acknowledgements: Juan Antonio Fernandez Ontiveros, j.a.fernandez.ontiveros(at)gmail.com
(End) J.A. Fernandez Ontiveros [INAF-IAPS, Italy], P. Vannier [CDS] 29-Jul-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line