J/A+A/652/A23 HII-chi-mistry-IR. Abundances (Fernandez-Ontiveros+, 2021)
Measuring chemical abundances with infrared nebular lines: HII-CHI-MISTRY-IR.
Fernandez-Ontiveros J.A., Perez-Montero E., Vilchez J.M., Amorin R.,
Spinoglio L.
<Astron. Astrophys. 652, A23 (2021)>
=2021A&A...652A..23F 2021A&A...652A..23F (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, IR ; Galaxies, spectra ; Spectra, infrared ; Abundances
Keywords: ISM: abundances - galaxies: abundances - infrared: ISM -
techniques: spectroscopic
Abstract:
We provide a new method to derive heavy element abundances based on
the unique suite of nebular lines in the mid- to far-infrared (IR)
range. Using grids of photo-ionisation models that cover a wide range
in O/H and N/O abundances, and ionisation parameter, our code
HII-CHI-MISTRY-IR (HCm-IR) provides model-based abundances based on
extinction free and temperature insensitive tracers, two significant
advantages over optical diagnostics. The code is probed using a sample
of 56 galaxies observed with Spitzer and Herschel covering a wide
range in metallicity, 7.2~<12+log(O/H)~<8.9. The IR model-based
metallicities obtained are robust within a scatter of 0.03dex when
the hydrogen recombination lines, which are typically faint
transitions in the IR range, are not available. When compared to the
optical abundances obtained with the direct method,model- based
methods, and strong-line calibrations, HCm-IR estimates show a typical
dispersion of ∼0.2dex, in line with previous studies comparing IR and
optical abundances, a do not introduce a noticeable systematic above
12+log(O/H)>7.6. This accuracy can be achieved using the lines
[SIV]10.5um, [SIII]18.7,33.5um, [NeIII]15.6um and [NeII]12.8um.
Additionally, HCm-IR provides an independent N/O measurement when the
[OIII]52,88um and [NIII]57um transitions are measured, and therefore
the derived abundances in this case do not rely on particular
assumptions in the N/O ratio. Large uncertainties (∼0.4dex) may
affect the abundance determinations of galaxies at sub- or over-solar
metallicities when a solar-like N/O ratio is adopted. Finally, the
code has been applied to 8 galaxies located at 1.8<z<7.5 with
ground-based detections of far-IR lines redshifted in the submm range,
revealing solar-like N/O and O/H abundances in agreement with recent
studies.
Description:
Table1: IR line fluxes for our sample of star-forming galaxies. For
each galaxy we provide the name, coordinates, redshift, spectral type
(dwarf galaxy, starburst, or ULIRG), the mid-IR line fluxes in units
of 1.e-17 W/m2, and the references in the literature where these
measurements were compiled. The complete version of the table is
published in the online version of this paper. Negative values in the
table represent 3sigma upper limits.
Table 3: HCm-IR abundances compared with optical line-based methods.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 296 66 IR line fluxes for sample of star-forming galaxies
table3.dat 118 66 *HCm-IR abundances compared with optical
line-based methods
--------------------------------------------------------------------------------
Note on table3.dat: Columns 1-3 show the name, chemical abundance, and N/O
abundance ratio derived from the IR line fluxes using HCm-IR for our sample
of star-forming galaxies. These are compared with the abundance determinations
derived from the optical line fluxes using HCm in column 4 and 5, and those
reported in the literature in columns 6 favouring the direct method (DM)
over the strong-line methods (SL) when available (references in column 7).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 20 A20 --- Name Galaxy name
22- 23 I2 h RAh Right ascension (J2000.0)
25- 26 I2 min RAm Right ascension (J2000.0)
28- 34 F7.4 s RAs Right ascension (J2000.0)
37 A1 --- DE- Declination sign (J2000.0)
38- 39 I2 deg DEd Declination (J2000.0)
41- 42 I2 arcmin DEm Declination (J2000.0)
44- 50 F7.4 arcsec DEs Declination (J2000.0)
53- 61 F9.6 --- z Redshift
63- 67 A5 --- Type Spectral type
74- 76 F3.1 10-17W/m2 bra-4p05 ? Brackett alpha line flux
82- 85 F4.2 10-17W/m2 e_bra-4p05 ? Brackett alpha flux uncertainty
86- 94 F9.8 10-17W/m2 pfa-7p5 ? Pfund alpha line flux
95-102 F8.7 10-17W/m2 e_pfa-7p5 ? Pfund alpha flux uncertainty
104-110 F7.3 10-17W/m2 s4-10p5 ? [SIV]10.5 line flux
113-119 F7.3 10-17W/m2 e_s4-10p5 ? [SIV]10.5 flux uncertainty
123-127 F5.2 10-17W/m2 hua-12p4 ? Humphreys alpha line flux
133-136 F4.2 10-17W/m2 e_hua-12p4 ? Humphreys alpha flux uncertainty
139-146 F8.3 10-17W/m2 n2-12p8 ? [NeII]12.8 line flux
150-155 F6.3 10-17W/m2 e_n2-12p8 ? [NeII]12.8 flux uncertainty
158-164 F7.3 10-17W/m2 n3-15p6 ? [NeIII]15.6 line flux
168-173 F6.3 10-17W/m2 e_n3-15p6 ? [NeIII]15.6 flux uncertainty
175-181 F7.3 10-17W/m2 s3-18p7 ? [SIII]18.7 line flux
184-190 F7.3 10-17W/m2 e_s3-18p7 ? [SIII]18.7 flux uncertainty
191-198 F8.3 10-17W/m2 s3-33p5 ? [SIII]33.5 line flux
201-207 F7.3 10-17W/m2 e_s3-33p5 ? [SIII]33.5 flux uncertainty
208-215 F8.3 10-17W/m2 o3-52 ? [OIII]52 line flux
217-223 F7.3 10-17W/m2 e_o3-52 ? [OIII]52 flux uncertainty
224-231 F8.3 10-17W/m2 n3-57 ? [NIII]57 line flux
232-238 F7.3 10-17W/m2 e_n3-57 ? [NIII]57 flux uncertainty
239-246 F8.3 10-17W/m2 o3-88 ? [OIII]88 line flux
248-253 F6.3 10-17W/m2 e_o3-88 ? [OIII]88 flux uncertainty
254-261 F8.4 10-17W/m2 n2-122 ? [NII]122 line flux
263-269 F7.4 10-17W/m2 e_n2-122 ? [NII]122 flux uncertainty
270-296 A27 --- Refs References (1)
--------------------------------------------------------------------------------
Note (1): References for line fluxes as follows:
ARM07 = Armus et al., 2007ApJ...656..148A 2007ApJ...656..148A
B-S09 = Bernard-Salas et al., 2009ApJS..184..230B 2009ApJS..184..230B, Cat. J/ApJS/184/230
BRE19 = De Breuck et al., 2019A&A...631A.167D 2019A&A...631A.167D, Cat. J/A+A/631/A167
COR15 = Cormier et al., 2015A&A...578A..53C 2015A&A...578A..53C, Cat. J/A+A/578/A53
DAN05 = Dannerbauer et al., 2005A&A...441..999D 2005A&A...441..999D
FAR07 = Farrah et al., 2007ApJ...667..149F 2007ApJ...667..149F
FER15 = Ferkinhoff et al., 2015ApJ...806..260F 2015ApJ...806..260F
FO16 = Fernandez-Ontiveros et al., 2016ApJS..226...19F 2016ApJS..226...19F, Cat. J/ApJS/226/19
G+A09 = Goulding & Alexander, 2009MNRAS.398.1165G 2009MNRAS.398.1165G, Cat. J/MNRAS/398/1165
HC18 = Herrera-Camus et al., 2018ApJ...861...94H 2018ApJ...861...94H, Cat. J/ApJ/861/94
IMA10 = Imanishi et al., 2010ApJ...721.1233I 2010ApJ...721.1233I
INA13 = Inami et al., 2013ApJ...777..156I 2013ApJ...777..156I, Cat. J/ApJ/777/156
LAM18 = Lamarche et al., 2018ApJ...867..140L 2018ApJ...867..140L
NOV19 = Novak al., 2019ApJ...881...63N 2019ApJ...881...63N
PS17 = Pereira-Santaella et al., 2017MNRAS.470.1218P 2017MNRAS.470.1218P
RIG18 = Rigopoulou et al., 2018MNRAS.473...20R 2018MNRAS.473...20R
TAD19 = Tadaki et al., 2019ApJ...876....1T 2019ApJ...876....1T
TW = This work
UZG16 = Uzgil et al., 2016ApJ...832..209U 2016ApJ...832..209U
VEI09 = Veilleux et al., 2009ApJS..182..628V 2009ApJS..182..628V, Cat. J/ApJS/182/628
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 19 A19 --- Name Galaxy name
23- 26 F4.2 --- O/H-ir ? IR-based O/H abundance, 12+log(O/H)IR
31- 34 F4.2 --- e_O/H-ir ? IR-based O/H abundance error
37- 41 F5.2 --- N/O-ir ? IR-based N/O abundance, log(N/O)IR
46- 49 F4.2 --- e_N/O-ir ? IR-based N/O abundance error
53- 57 F5.3 --- O/H-hcm ? Optical-based O/H abundance, 12+log(O/H)HCm
62- 66 F5.3 --- e_O/H-hcm ? Optical-based O/H abundance error
70- 74 F5.2 --- N/O-hcm ? Optical-based N/O abundance, log(N/O)HCm
80- 83 F4.2 --- e_N/O-hcm ? Optical-based N/O abundance error
88- 91 F4.2 --- O/H-lit ? Optical-based O/H abundance from literature,
12+log(O/H)lit
97-100 F4.2 --- e_O/H-lit ? Optical-based O/H abundance error from
literature
102-106 A5 --- r_O/H-lit Reference for O/H-lit (1)
109-112 F4.2 --- O/H-R ? Optical O/H abundance estimated obtained
using Pilyugin & Grebel (2016MNRAS.457.3678P 2016MNRAS.457.3678P)
R-calibration, 12+log(O/H)R
115-118 F4.2 --- O/H-S ? Optical O/H abundance estimated obtained
using Pilyugin & Grebel (2016MNRAS.457.3678P 2016MNRAS.457.3678P)
S-calibration, 12+log(O/H)S
--------------------------------------------------------------------------------
Note (1): References for metallicities:
ENG08 = Engelbracht et al., 2008ApJ...678..804E 2008ApJ...678..804E
KEN11 = Kennicutt et al., 2011PASP..123.1347K 2011PASP..123.1347K
MAD13 = Madden et al., 2013PASP..125..600M 2013PASP..125..600M
MOU10 = Moustakas et al., 2010ApJS..190..233M 2010ApJS..190..233M, Cat. J/ApJS/190/233
PET93 = Petrosian & Burenkov, 1993A&A...279...21P 1993A&A...279...21P
PIL14 = Pilyugin et al., 2014AJ....147..131P 2014AJ....147..131P, Cat. J/AJ/147/131
RUP08 = Rupke et al., 2008ApJ...674..172R 2008ApJ...674..172R, Cat. J/ApJ/674/172
--------------------------------------------------------------------------------
Acknowledgements:
Juan Antonio Fernandez Ontiveros, j.a.fernandez.ontiveros(at)gmail.com
(End) J.A. Fernandez Ontiveros [INAF-IAPS, Italy], P. Vannier [CDS] 29-Jul-2021