J/A+A/663/A177      High-mass star-forming regions cyanopolyyne    (Wang+, 2022)

Cyanopolyyne line survey towards high-mass star-forming regions with TMRT. Wang Y.X., Zhang J.S., Yan Y.T., Qiu J.J., Chen J.L., Zhao J.Y., Zou Y.P., Wu X.C., He X.L., Gong Y.B., Cai J.H. <Astron. Astrophys., 663, A177 (2022)> =2022A&A...663A.177W 2022A&A...663A.177W (SIMBAD/NED BibCode)
ADC_Keywords: Star Forming Region ; Photometry, millimetric/submm ; Abundances ; Masers Keywords: astrochemistry - stars: formation - ISM: clouds - ISM: molecules Abstract: Cyanopolyynes (HC2n+1N, n=1,2,3), which are the linear carbon chain molecules, are precursors for the prebiotic synthesis of simple amino acids. They are important for understanding prebiotic chemistry and may be good tracers of the star formation sequence. We aim to search for cyanopolyynes in high-mass star-forming regions (HMSFRs) at possibly different evolutionary stages, investigate the evolution of HC3N and its relation with shock tracers, and detect the existence of HC5N and HC7N in HMSFRs with a formed protostar. We carried out a cyanopolyyne line survey towards a large sample of HMSFRs using the Shanghai Tian Ma 65m Radio Telescope (TMRT). Our sample consisted of 123 targets taken from the TMRT C band line survey. It included three kinds of sources, namely those with detection of the 6.7GHz CH3OH maser alone, with detection of the radio recombination line (RRL) alone, and with detection of both (hereafter referred to as Maser-only, RRL-only, and Maser-RRL sources, respectively). For our sample with detection of cyanopolyynes, their column densities were derived using the rotational temperature measured from the NH3 lines. We constructed and fitted the far-infrared (FIR) spectral energy distributions (SED; obtained from the Herschel FIR data and the Atacama Pathfinder Experiment data at 870 um) of our HC3N sources. Moreover, by analysing the relation between HC3N and other shock tracers, we also investigate whether HC3N is a good tracer of shocks. We detected HC3N in 38 sources, HC5N in 11 sources, and HC7N in G24.790+0.084, with the highest detection rate being found for Maser-RRL sources and a very low detection rate found for RRL-only sources. The mean column density of HC3N was found to be (1.75±0.42)x1013, (2.84±0.47)x1013, and (0.82±0.15)x1013cm-2 for Maser-only, Maser-RRL, and RRL-only sources, respectively. Based on a fit of the FIR SED, we derive their dust temperatures, H2 column densities, and abundances of cyanopolyynes relative to H2. The mean relative abundance of HC3N was found to be (1.22±0.52)x10-10 for Maser-only, (5.40±1.45)x10-10 for Maser-RRL, and (1.65±1.50)x10-10 for RRL-only sources, respectively. The detection rate, the column density, and the relative abundance of HC3N increase from Maser-only to Maser-RRL sources and decrease from Maser-RRL to RRL-only sources. This trend is consistent with the proposed evolutionary trend of HC3N under the assumption that our Maser-only, Maser-RRL, and RRL-only sources correspond to massive young stellar objects, ultracompact HII regions, and normal classical HII regions, respectively. Our detections enlarge the sample of HC3N in HMSFRs and support the idea that unsaturated complex organic molecules can exist in HMSFRs with a formed protostar. Furthermore, a statistical analysis of the integrated line intensity and column density of HC3N and shock-tracing molecules (SiO, H2CO) enabled us to find positive correlations between them. This suggests that HC3N may be another tracer of shocks, and should therefore be the subject of further observations and corresponding chemical simulations. Our results indirectly support the idea that the neutral-neutral reaction between C2H2 and CN is the dominant formation pathway of HC3N. Description: We present a cyanopolyyne (HC2n+1N) line survey in the Ku band (12-18GHz) towards a large sample of 123 HMSFRs using the TMRT. The sample was divided into 29 sources with detection of the 6.7GHz CH3OH maser alone (Maser-only), 44 sources with detection of RRL alone (RRL-only), and 50 sources with both maser and RRL (Maser-RRL). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2.dat 121 21 Far infrared properties of our HC3N sources tableb1.dat 101 41 The HC3N (J = 2-1) transitions detected with the TMRT tableb2.dat 91 12 The HC5N (J=3-2) and HC7N (J=15-14) transitions detected with TMRT tableb3.dat 103 38 The column density and the relative abundance for HC3N, HC5N, and HC7N. tableb4.dat 63 23 The integrated line intensities of other molecules tablec1.dat 53 85 Sources without HC3N (J=2-1) detection -------------------------------------------------------------------------------- See also: J/A+A/568/A41 : ATLASGAL Compact Source Catalog: 280<l<60 (Urquhart+, 2014) J/ApJ/783/130 : Parallaxes of high mass star forming regions (Reid+, 2014) J/A+A/586/A149 : SiO in ATLASGAL-selected massive clumps (Csengeri+, 2016) J/MNRAS/473/1059 : Complete sample of Galactic clump properties (Urquhart+, 2018) J/ApJ/885/131 : ∼200 high-mass SFR plx + proper motion with VLBI (Reid+, 2019) Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Class Classifications 12- 24 A13 --- Name Source name, GLL.lll+B.bbb 26- 29 I4 Jy F70 Herschel flux density at 70um 31- 33 I3 Jy e_F70 Herschel flux density at 70um error 35- 38 I4 Jy F160 Herschel flux density at 160um 40- 42 I3 Jy e_F160 Herschel flux density at 160um error 44- 47 I4 Jy F250 Herschel flux density at 250um 49- 51 I3 Jy e_F250 Herschel flux density at 250um error 53- 55 I3 Jy F350 Herschel flux density at 350um 57- 59 I3 Jy e_F350 Herschel flux density at 350um error 61- 63 I3 Jy F500 Herschel flux density at 500um 65- 67 I3 Jy e_F500 Herschel flux density at 500um error 69- 70 I2 Jy F870 APEX flux density at 870um (1) 72 I1 Jy e_F870 APEX flux density at 870um error (1) 74- 75 I2 arcsec Reff Effective radius of sources at 870um (1) 77- 79 I3 --- gamma Gas-to-dust ratio 81- 85 F5.2 K Tdust Dust temperature 87- 90 F4.2 K e_Tdust Dust temperature error 92- 95 I4 Msun M Total (gas + dust) core mass 97-100 I4 Msun e_M Total (gas + dust) core mass error 102-105 F4.1 K T0dust Dust temperature from Urquhart et al. (2018MNRAS.473.1059U 2018MNRAS.473.1059U, Cat. J/MNRAS/473/1059) 107-110 I4 Msun Ma Total mass from Urquhart et al. (2018MNRAS.473.1059U 2018MNRAS.473.1059U, Cat. J/MNRAS/473/1059) 112-116 F5.2 10+23cm-2 N(H2) Column density of H2 118-121 F4.2 10+23cm-2 e_N(H2) Column density of H2 error -------------------------------------------------------------------------------- Note (1): Flux density and effective radius of sources at 870um from APEX telescope, which are given by Urquhart et al. (2014A&A...568A..41U 2014A&A...568A..41U, Cat. J/A+A/568/A41). -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- Name Source Name (GLLL.lll+B.bbb) 17- 18 I2 h RAh Right ascension (J2000) 20- 21 I2 min RAm Right ascension (J2000) 23- 27 F5.2 s RAs Right ascension (J2000) 29 A1 --- DE- Declination sign (J2000) 30- 31 I2 deg DEd Declination (J2000) 33- 34 I2 arcmin DEm Declination (J2000) 36- 39 F4.1 arcsec DEs Declination (J2000) 41- 46 F6.2 km/s Vlsr LSR velocity 48- 51 F4.2 km/s e_Vlsr LSR velocity error 53- 56 F4.2 km/s Deltanu Full width at half maximum 58- 61 F4.2 km/s e_Deltanu Full width at half maximum error 63- 65 I3 mK Tmb Peak mean brigthness temperature value 67- 68 I2 mK rms ?=- rms noise value 70- 73 F4.2 K.km/s IntTmbdv Integrated line intensity 75- 78 F4.2 K.km/s e_IntTmbdv Integrated line intensity error 80- 83 F4.2 kpc Dist ? Heliocentric distance D is taken from the trigonometric parallax measurements (1) 84 A1 --- n_Dist [*] * for Dist obtained from the latest Parallax-based Distance Calculator V2 86- 90 F5.2 kpc Dgc ? Galactocentric distance 92-101 A10 --- Class Classifications -------------------------------------------------------------------------------- Note (1): from Reid et al., 2014ApJ...783..130R 2014ApJ...783..130R, Cat. J/ApJ/783/130, 2019ApJ...885..131R 2019ApJ...885..131R, Cat. J/ApJ/885/131. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- Mol Molecule species 6- 18 A13 --- Name Source Name (GLL.lll+B.bbb) 20- 21 I2 h RAh Right ascension (J2000) 23- 24 I2 min RAm Right ascension (J2000) 26- 30 F5.2 s RAs Right ascension (J2000) 32 A1 --- DE- Declination sign (J2000) 33- 34 I2 deg DEd Declination (J2000) 36- 37 I2 arcmin DEm Declination (J2000) 39- 42 F4.1 arcsec DEs Declination (J2000) 44- 49 F6.2 km/s Vlsr LSR velocity 51- 54 F4.2 km/s e_Vlsr LSR velocity error 56- 59 F4.2 km/s Deltanu Full width at half maximum 61- 64 F4.2 km/s e_Deltanu Full width at half maximum error 66- 67 I2 mK Tmb Peak mean brightness temperature value 69- 70 I2 mK rms ?=- rms noise value 72- 75 F4.2 K.km/s IntTmbdv Integrated line intensity 77- 80 F4.2 K.km/s e_IntTmbdv Integrated line intensity error 82- 91 A10 --- Class Classifications -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Class Classifications 12- 26 A15 --- Name Source Name (GLLL.lll+BB.bbb) 28- 32 F5.2 K Trot Rotational temperature of NH3 33 A1 --- n_Trot [*] Note on Trot (1) 35- 39 F5.2 10+13cm-2 N(HC3N) Column density of HC3N 41- 44 F4.2 10+13cm-2 e_N(HC3N) Column density of HC3N error 46- 50 F5.2 10+10 X(HC3N) ?=- Relative abundance of HC3N 52- 55 F4.2 10+10 e_X(HC3N) ?=- Relative abundance of HC3N error 57- 60 F4.2 10+13cm-2 N(HC5N) ?=- Column density of HC5N 62- 65 F4.2 10+13cm-2 e_N(HC5N) ?=- Column density of HC5N error 67- 70 F4.2 10+10 X(HC5N) ?=- Relative abundance of HC5N 72- 75 F4.2 10+10 e_X(HC5N) ?=- Relative abundance of HC5N error 77- 80 F4.2 10+13cm-2 N(HC7N) ?=- Column density of HC7N 82- 85 F4.2 10+13cm-2 e_N(HC7N) ?=- Column density of HC7N error 87- 90 F4.2 10+10 X(HC7N) ?=- Relative abundance of HC7N 92- 95 F4.2 10+10 e_X(HC7N) ?=- Relative abundance of HC7N error 97-101 F5.2 --- N(HC3N)/N(HC5N) ?=- Abundance ratio of N(HC3N)/N(HC5N) 103 I1 --- r_Trot ?=- Reference (2) -------------------------------------------------------------------------------- Note (1): * for mean Trot of each type. Note (2): Rotational temperature references as follows: 1 = Yang et al. in prep. 2 = Wienen et al., 2012A&A...544A.146W 2012A&A...544A.146W, Cat. J/A+A/544/A146 3 = Urquhart et al., 2011MNRAS.418.1689U 2011MNRAS.418.1689U, Cat. J/MNRAS/418/1689 4 = Li et al., 2016AJ....152...92L 2016AJ....152...92L, Cat. J/AJ/152/92 5 = Cyganowski et al., 2013ApJ...764...61C 2013ApJ...764...61C, Cat. J/ApJ/764/61 6 = Svoboda et al., 2016ApJ...822...59S 2016ApJ...822...59S, Cat. J/ApJ/822/59 7 = Chira et al., 2013A&A...552A..40C 2013A&A...552A..40C, Cat. J/A+A/552/A40 -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Class Classifications 12- 26 A15 --- Name Source Name (GLLL.lll+BB.bbb)Source name 27- 31 F5.2 K.km/s IH2CO ?=- Integrated line intensity of H2CO (taken from TMRT C band survey) 33- 36 F4.2 K.km/s e_IH2CO ?=- Integrated line intensity of H2CO error 38- 42 F5.2 10+13cm-2 NH2C ?=- Column density of H2CO, which is derived as done for cyanopolyynes in Sect. 3.1 44- 47 F4.2 10+13cm-2 e_NH2C ?=- Column density of H2CO error 49- 53 F5.2 K.km/s ISiO ?=- Integrated line intensity of SiO, taken from Csengeri et al. (2016A&A...586A.149C 2016A&A...586A.149C, Cat. J/A+A/586/A149) 55- 58 F4.2 K.km/s e_ISiO ?=- Integrated line intensity of SiO error 60- 63 F4.2 10+13cm-2 NSiO ?=- Column density of SiO -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- Name Source Name (GLLL.lll+BB.bbb) 17- 18 I2 h RAh Right ascension (J2000) 20- 21 I2 min RAm Right ascension (J2000) 23- 27 F5.2 s RAs Right ascension (J2000) 29 A1 --- DE- Declination sign (J2000) 30- 31 I2 deg DEd Declination (J2000) 33- 34 I2 arcmin DEm Declination (J2000) 36- 39 F4.1 arcsec DEs Declination (J2000) 41- 50 A10 --- Class Classifications 52- 53 I2 --- rms rms noise value -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 24-Nov-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line