J/A+A/664/A196 Galaxies with good spectroscopic redshifts (Euclid Coll+, 2022)
Euclid preparation. XX. The complete calibration of the color-redshift relation
survey: LBT observations and data release.
Euclid Collaboration, Saglia R., De Nicola S., Fabricius M., Guglielmo V.,
Snigula J., Zoller R., Bender R., Heidt J., Masters D., Stern D.,
Paltani S., Amara A., Auricchio N., Baldi M., Bodendorf C., Bonino D.,
Branchini E., Brescia M., Brinchmann J., Camera S., Capobianco V.,
Carbone C., Carretero J., Castellano M., Cavuoti S., Cledassou R.,
Congedo G., Conselice C.J., Conversi L., Copin Y., Corcione L., Courbin F.,
Cropper M., Da Silva A., Degaudenzi H., Douspis M., Dubath F.,
Duncan C.A.J., Dupac X., Dusini S., Farrens S., Frailis M., Franceschi E.,
Galeotta S., Garilli B., Gillard W., Gillis B., Giocoli C., Grazian A.,
Grupp F., Haugan S.V.H., Hoekstra H., Holmes W., Hormuth F., Hornstrup A.,
Jahnke K., Kummel M., Kermiche S., Kiessling A., Kunz M., Kurki-suonio H.,
Laureijs R., Ligori S., Lilje P.B., Lloro I., Maiorano E., Marggraf O.,
Markovic K., Marulli F., Massey R., Mccracken H.J., Melchior M., Meylan G.,
Moresco M., Moscardini L., Munari E., Niemi S.M., Padilla C., Pasian F.,
Pedersen K., Percival W.J., Pettorino V., Pires S., Poncet M., Popa L.,
Pozzetti L., Raison F., Renzi A., Rhodes J., Riccio G., Romelli E.,
Rossetti E., Sapone D., Sartoris B., Schneider P., Secroun A., Seidel G.,
Sirignano C., Sirri G., Stanco L., Tallada-Crespi P., Tavagnacco D.,
Taylor A.N., Tereno I., Toledo-moreo R., Torradeflot F., Tutusaus I.,
Valentijn E.A., Valenziano L., Vassallo T., Wang Y., Zacchei A.,
Zamorani G., Zoubian J., Andreon S., Bardelli S., Gracia-carpio J.,
Maino D., Mauri N., Tramacere A., Zucca E., Alvarez Ayllon A., Aussel H.,
Baccigalupi C., Balaguera-Antolinez A., Ballardini M., Biviano A.,
Bolzonella M., Bozzo E., Burigana C., Cabanac R., Cappi A., Carvalho C.S.,
Casas S., Castignani G., Cooray A., Coupon J., Courtois H.M., Davini S.,
Desprez G., Dole H., Escartin J.A., Escoffier S., Farina M., Fotopoulou S.,
Ganga K., Garcia-bellido J., George K., Giacomini F., Gozaliasl G.,
Hildebrandt H., Hook I., Ilbert O., Kansal V., Kashlinsky A., Keihanen E.,
Kirkpatrick C.C., Loureiro A., Macias-Perez J., Magliocchetti M.,
Mainetti G., Maoli R., Martinelli M., Martinet N., Metcalf R.B.,
Morgante G., Nadathur S., Nucita A.A., Patrizii L., Popa V., Porciani C.,
Potter D., Pourtsidou A., Reimberg P., Sanchez A.G., Sakr Z., Schirmer M.,
Sefusatti E., Sereno M., Stadel J., Teyssier R., Valieri C., Valiviita J.,
Veropalumbo A., Viel M.
<Astron. Astrophys., 664, A196 (2022)>
=2022A&A...664A.196E 2022A&A...664A.196E (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies ; Optical ; Redshifts
Keywords: galaxies: distances and redshifts - catalogs - surveys
Abstract:
The Complete Calibration of the Color-Redshift Relation survey (C3R2)
is a spectroscopic program designed to empirically calibrate the
galaxy color-redshift relation to the Euclid depth (IE=24.5), a
key ingredient for the success of Stage IV dark energy projects based
on weak lensing cosmology. A spectroscopic calibration sample that is
as representative as possible of the galaxies in the Euclid weak
lensing sample is being collected, selecting galaxies from a
self-organizing map (SOM) representation of the galaxy color space.
Here, we present the results of a near-infrared H- and K-band
spectroscopic campaign carried out using the LUCI instruments at the
LBT. For a total of 251 galaxies, we present new highly reliable
redshifts in the 1.3≤z≤1.7 and 2≤z≤2.7 ranges. The
newly-determined redshifts populate 49 SOM cells that previously
contained no spectroscopic measurements and almost twice the
occupation numbers of an additional 153 SOM cells. A final optical
ground-based observational effort is needed to calibrate the missing
cells, in particular in the redshift range 1.7≤z≤2.7, which lack
spectroscopic calibration. In the end, Euclid itself will deliver
telluric-free near-IR spectra that can complete the calibration.
Description:
We present the results of the LBT campaign to calibrate photometric
redshifts in the redshift range 1.3-2.7 using the LUCI near-infrared
spectrographs in the framework of the C3R2 project. We observed 88
masks, 58 in the COSMOS field and 30 in the VVDS field, with an
average of 12 objects per mask, aiming to detect the Hα line for
primary targets, and the [OIII] or Pa lines for secondary objects. We
extracted 1119 spectra, 1100 of which were identified as C3R2
galaxies. From 292 of these galaxies we were able to measure reliable
spectroscopic redshifts.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tableb1.dat 93 292 Sample of galaxies with good spectroscopic redshifts
--------------------------------------------------------------------------------
See also:
J/A+A/642/A192 : C3R2-KMOS zsp + galaxy physical properties (Euclid Coll. 2020)
J/ApJS/256/9 : Euclid preparation. XIV. C3R2 survey DR3 (Stanford+, 2021)
Byte-by-byte Description of file: tableb1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- ObjId Object identification number
8- 20 F13.9 deg RAdeg Right ascension (J2000)
22- 33 F12.9 deg DEdeg Declination (J2000)
35- 40 F6.4 --- zspec Spectroscopic redshift
42- 44 F3.1 --- Flag Flag (1)
46- 53 A8 --- Line Line (Hα, [OIII] or Pa)
55- 93 A39 --- 1D-Spectrum Spectrum ID
--------------------------------------------------------------------------------
Note (1): Flag as follows:
4.0 = to redshifts with multiple good S/N line detections
3.5 = good S/N single line detections
3.0 = convincing single line detections
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Euclid Coll., Paper I 2022A&A...662A.112E 2022A&A...662A.112E
Euclid Coll., Paper II 2019MNRAS.484.5509E 2019MNRAS.484.5509E
Euclid Coll., Paper III 2019A&A...627A..23E 2019A&A...627A..23E
Euclid Coll., Paper IV 2019A&A...627A..59E 2019A&A...627A..59E
Euclid Coll., Paper V 2019A&A...631A..85E 2019A&A...631A..85E
Euclid Coll., Paper VI 2020A&A...635A.139E 2020A&A...635A.139E
Euclid Coll., Paper VII 2020A&A...642A.191E 2020A&A...642A.191E
Euclid Coll., Paper VIII 2020A&A...642A.192E 2020A&A...642A.192E, Cat. J/A+A/642/A192
Euclid Coll., Paper IX 2021MNRAS.505.2840E 2021MNRAS.505.2840E
Euclid Coll., Paper X 2020A&A...644A..31E 2020A&A...644A..31E
Euclid Coll., Paper XI 2021A&A...647A.117E 2021A&A...647A.117E
Euclid Coll., Paper XII 2021A&A...655A..44E 2021A&A...655A..44E
Euclid Coll., Paper XIII 2022A&A...657A..90E 2022A&A...657A..90E
Stanford et al., Paper XIV 2021ApJS..256....9S 2021ApJS..256....9S, Cat. J/ApJS/256/9
Euclid Coll., Paper XV 2022A&A...657A..91E 2022A&A...657A..91E
Euclid Coll., Paper XVI 2022A&A...657A..92E 2022A&A...657A..92E
Euclid Coll., Paper XVII 2022A&A...658A.126E 2022A&A...658A.126E
Euclid Coll., Paper XVIII 2022A&A...662A..92E 2022A&A...662A..92E
Euclid Coll., Paper XIX 2022A&A...662A..93E 2022A&A...662A..93E
van Mierlo et al., Paper XXI 2022A&A...666A.200V 2022A&A...666A.200V
(End) Patricia Vannier [CDS] 10-Feb-2023