J/A+A/669/A117      Mass-radius relationship of 34 Kepler planets (Leleu+, 2023)

Removing biases on the density of sub-Neptunes characterised via transit timing variations. Update on the mass-radius relationship of 34 Kepler planets Leleu A., Delisle J.-B., Udry S., Mardling R., Turbet M., Egger J.A., Alibert Y., Chatel G., Eggenberger P., Stalport M. <Astron. Astrophys. 669, A117 (2023)> =2023A&A...669A.117L 2023A&A...669A.117L (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Photometry ; Optical Keywords: planets and satellites: fundamental parameters - methods: data analysis - techniques: photometric - celestial mechanics - planets and satellites: general Abstract: Transit timing variations (TTVs) can provide useful information on compact multi-planetary systems observed by transits by setting constraints on the masses and eccentricities of the observed planets. This is especially helpful when the host star is not bright enough for a radial velocity (RV) follow-up. However, {in the past decade}, a number of works have shown that TTV- characterised planets tend to have lower densities than planets characterised on the basis of RVs. Re-analysing 34 Kepler planets in the super-Earth to sub- Neptunes range using the RIVERS approach, we show that at least some of these discrepancies were due to the way transit timings were extracted from the light curve, as a result of their tendency to underestimate the TTV amplitudes. We recovered robust mass estimates (i.e. with low prior dependency) for 23 of the planets. We compared these planets the RV- characterised population and found that a large fraction of those that previously had unusually low density estimates were adjusted, allowing them to occupy a place on the mass-radius diagram much closer to the bulk of known planets. However, a slight shift toward lower densities remains, which could indicate that the compact multi-planetary systems characterised by TTVs are indeed composed of planets that are different from the bulk of the RV- characterised population. These results are especially important in the context of obtaining an unbiased view of the compact multi-planetary systems detected by Kepler, TESS, and the upcoming PLATO mission. Description: We re-analysed a sample of 34 Kepler planets in the super-Earth to mini-Neptune range in 15 multi-planetary systems. Most of these planets were known to have TTVs, with transit timings available in current databases Rowe et al. (2015ApJS..217...16R 2015ApJS..217...16R, Cat. J/ApJS/217/16); Holczer et al. (2016ApJS..225....9H 2016ApJS..225....9H, Cat. J/ApJS/225/9). These systems were previously characterised by fitting these pre-extracted transit timings (e.g. Jontof-Hutter et al. 2016ApJ...820...39J 2016ApJ...820...39J; Hadden & Lithwick, 2017AJ....154....5H 2017AJ....154....5H, Cat. J/AJ/154/5). Our analysis used the RIVERS method, which first estimates the transit timings of the planets using the RIVERS.deep algorithm (CNN-based image recognition; see Sect. 2.3), then uses a photo-dynamical fit of the light curve (see Sect. 2.5). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 81 15 Stellar parameters timings.dat 69 4578 Transit timings and errors extracted from photo-dynamical fits samp-2p.dat 225 3300 Samples of the photodynamic fits for 2-planets systems, Jacobi orbital elements at epoch 100.0 [BJD-2454833.0] samp-3p.dat 330 900 Samples of the photodynamic fits for 3-planets systems, Jacobi orbital elements at epoch 100.0 [BJD-2454833.0] -------------------------------------------------------------------------------- See also: V/133 : Kepler Input Catalog (Kepler Mission Team, 2009) J/AJ/159/280 : Gaia-Kepler stellar properties cat. I. KIC stars (Berger+, 2020) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Name, Kepler-NNN 12- 19 I8 --- KIC KIC identification number 20 A1 --- n_KIC [*] Note on KIC (1) 22- 27 F6.1 K Teff Effective temperature (2) 29- 33 F5.1 K e_Teff Effective temperature error (2) 35- 39 F5.3 Msun M* Star mass (2) 41- 45 F5.3 Msun e_M* Star mass error (2) 47- 51 F5.3 Rsun R* Star radius (2) 53- 57 F5.3 Rsun e_R* Star radius error (2) 59- 64 F6.4 Sun rho* Star density (2) 66- 71 F6.4 Sun e_rho* Star density error (2) 73- 78 A6 --- KOI KOI, KNNNNN 80- 81 A2 --- Samp [2p 3p] Sample with photodynamic fits (3) -------------------------------------------------------------------------------- Note (1): Note as follows: * = indicates that the parameters were updated, see sec. 2.2. Note (2): Stellar parameters from Berger et al. (2020, Cat. J/AJ/159/280) Note (3): 2p for samp-2p.dat, 3p for samp-3p.dat. -------------------------------------------------------------------------------- Byte-by-byte Description of file: timings.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- KOI KOI of the transiting planet, KNNNNN.NN 11- 29 F19.14 d Date [100.38/1588.16] Median transit date, BJD-2454833.0 31- 49 F19.14 d b_Date [100.38/1588.16] Date 0.15865 quantile, BJD-2454833.0 51- 69 F19.14 d B_Date [100.39/1588.17] Date 0.84135 quantile, BJD-2454833.0 -------------------------------------------------------------------------------- Byte-by-byte Description of file: samp-2p.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- KOI KOI, KNNNNN 8- 26 F19.15 deg lambda1 [9.25/319.64] Mean longitude 1 28- 46 F19.16 d P1 [5.72/15.09] Orbital period 1 48- 71 E24.17 --- ecw1 [-0.18/0.11] ecc1*cos(long of pericenter 1) 73- 96 E24.17 --- esw1 [-0.16/0.17] ecc1*sin(long of pericenter 1) 98-116 F19.16 --- logM1/M* [-5.81/-3.88] log10(m1/mstar) 118-136 F19.15 deg lambda2 [29.5/336.85] Mean longitude 2 138-155 F18.15 d P2 [8.98/25.76] Orbital period 2 157-180 E24.17 --- ecw2 [-0.12/0.13] ecc2*cos(long of pericenter 2) 182-205 E24.17 --- esw2 [-0.13/0.12] ecc2*sin(long of pericenter 2) 207-225 F19.16 --- logM2/M* [-5.64/-3.96] log10(m2/mstar) -------------------------------------------------------------------------------- Byte-by-byte Description of file: samp-3p.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- KOI KOI, KNNNNN 8- 25 F18.14 deg lambda1 [62.61/210.45] Mean longitude 1 27- 44 F18.16 d P1 [5.48/8.15] Orbital period 1 46- 69 E24.17 --- ecw1 [-0.06/0.07] ecc1*cos(long of pericenter 1) 71- 94 E24.17 --- esw1 [-0.03/0.09] ecc1*sin(long of pericenter 1) 96-114 F19.16 --- logM1/M* [-5.06/-4.3] log10(M1/Mstar) 116-133 F18.14 deg lambda2 [67.53/337.48] Mean longitude 2 135-152 F18.15 d P2 [8.28/12.34] Orbital period 2 154-177 E24.17 --- ecw2 [-0.06/0.05] ecc2*cos(long of pericenter 2) 179-202 E24.17 --- esw2 [-0.04/0.06] ecc2*sin(long of pericenter 2) 204-222 F19.16 --- logM2/M* [-5.19/-4.34] log10(M2/Mstar) 224-241 F18.14 deg lambda3 [159.63/332.25] Mean longitude 3 243-260 F18.15 d P3 [11.9/19.02] Orbital period 3 262-285 E24.17 --- ecw3 [-0.08/0.06] ecc3*cos(long of pericenter 3) 287-310 E24.17 --- esw3 [-0.08/0.05] ecc3*sin(long of pericenter 3) 312-330 F19.16 --- logM3/M* [-7.0/-4.31] log10(M3/Mstar) -------------------------------------------------------------------------------- Acknowledgements: Adrien Leleu, Adrien.Leleu(at)unige.ch
(End) Patricia Vannier [CDS] 16-Jan-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line