J/A+A/670/A68 Architecture of exoplanetary systems (Mishra+, 2023)
A framework for the architecture of exoplanetary systems.
I. Four classes of planetary system architecture.
Mishra L., Alibert Y., Udry S., Mordasini C.
<Astron. Astrophys. 670, A68 (2023)>
=2023A&A...670A..68M 2023A&A...670A..68M (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Planets ; Exoplanets ; Optical ;
Stars, masses ; Stars, diameters ; Effective temperatures
Keywords: planetary systems - planets and satellites: formation -
planets and satellites: dynamical evolution and stability -
planets and satellites: fundamental parameters
Abstract:
We present a novel model-independent framework for studying the
architecture of an exoplanetary system at the system level. This
framework allows us to characterise, quantify, and classify the
architecture of an individual planetary system. Our aim, in this
endeavour, was to generate a uniform systematic method to study the
arrangement and distribution of various planetary quantities within a
single planetary system. We propose that the space of planetary system
architectures be partitioned into four classes. We label these classes
as: Similar, Mixed, Anti-Ordered, and Ordered. A central aim of this
paper is to introduce these four architecture classes. We apply our
framework on observed and synthetic multi-planetary systems presenting
their mass, radius, density, core mass, and core water mass fraction
architectures; and explore the relationships between a system's
(mass) architecture and other properties. Our simulations suggest
that: (a) Similar architectures are the most common outcome of planet
formation, (b) internal structure and composition of planets shows a
strong link with their system architecture, (c) most systems inherit
their mass architecture from their core mass architecture, (d) most
planets which started inside the ice line and formed in-situ are found
in systems with Similar architecture, and (e) most Anti-Ordered
systems should be rich of wet planets, while most observed mass
Ordered systems should have many dry planets. We find that, in good
agreement with theory, observations are biased towards discovering
systems whose density architectures are Similar, Mixed, or
Anti-Ordered. This study engenders novel questions and new parameter
spaces for understanding theory and observations. Future studies may
utilise our framework to not only constraining our knowledge of an
individual planet, but also the multi-faceted architecture of an
entire planetary system. We also speculate on the role of system
architectures in hosting habitable worlds.
Description:
table1.dat contains a catalogue of observed multi-planetary systems:
There are 41 planetary systems with 194 planets in this catalogue. See
paper for discussion of selection criteria. The file contains the same
table as shown in the paper but in a machine readable format.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 1314 41 Catalogue of observed multi-planetary systems
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 10 A10 --- HostStar Name of Host star
12- 24 A13 --- TIC TESS Input Catalogue ID
26- 35 F10.1 --- KIC ? Kepler Input Catalogue ID
37- 64 A28 --- GaiaDR2 Gaia DR2 ID
66- 68 F3.1 --- Mult Number of planets in system
70- 87 F18.16 Msun Mstar Mass of host star
89- 106 F18.16 Msun e_Mstar ? Mass of host star error
108- 125 F18.16 Rsun Rstar ? Radius of host star
127- 144 F18.16 Rsun e_Rstar ? Radius of host star error
146- 163 F18.16 Lsun Lstar Luminosity of host star
165- 182 E18.16 Lsun e_Lstar ? Luminosity of host star error
184- 190 F7.2 K Teff Effective Temperature of host star
192- 199 F8.4 K e_Teff ? Effective Temperature of host star error
201- 219 F19.16 --- Met ? Metallicity of host star
221- 238 F18.16 --- e_Met ? Error in Metallicity of host star
240- 245 F6.3 Gyr Age ? Age of host star
247- 251 F5.3 Gyr e_Age ? Error in Age of host star
253- 271 F19.14 pc Dist Distance of host star
273 A1 --- ---
274- 280 A7 --- Planet1 Planet1 name or letter
282- 286 A5 --- Planet2 Planet2 name or letter
288- 292 A5 --- Planet3 Planet3 name or letter
294- 297 A4 --- Planet4 Planet4 name or letter
299- 305 A7 --- Planet5 Planet5 name or letter
307- 312 A6 --- Planet6 Planet6 name or letter
314- 319 A6 --- Planet7 Planet7 name or letter
321- 327 A7 --- Planet8 Planet8 name or letter
328- 329 A2 --- ---
330- 344 F15.10 Mgeo Mass1 ?=- Mass of planet 1
346- 359 F14.9 Mgeo Mass2 ?=- Mass of planet 2
361- 373 F13.8 Mgeo Mass3 ?=- Mass of planet 3
375- 388 F14.9 Mgeo Mass4 ?=- Mass of planet 4
390- 399 F10.6 Mgeo Mass5 ?=- Mass of planet 5
401- 411 F11.7 Mgeo Mass6 ?=- Mass of planet 6
413- 422 F10.7 Mgeo Mass7 ?=- Mass of planet 7
424- 433 F10.7 Mgeo Mass8 ?=- Mass of planet 8
434- 435 A2 -- ---
436- 449 E14.8 Mgeo e_Mass1 ?=- Mass of planet 1 error
451- 464 E14.8 Mgeo e_Mass2 ?=- Mass of planet 2 error
466- 479 E14.8 Mgeo e_Mass3 ?=- Mass of planet 3 error
481- 494 E14.8 Mgeo e_Mass4 ?=- Mass of planet 4 error
496- 509 E14.8 Mgeo e_Mass5 ?=- Mass of planet 5 error
511- 524 E14.8 Mgeo e_Mass6 ?=- Mass of planet 6 error
526- 539 E14.8 Mgeo e_Mass7 ?=- Mass of planet 7 error
541- 554 E14.8 Mgeo e_Mass8 ?=- Mass of planet 8 error
555- 556 A2 --- ---
557- 567 F11.8 Rgeo Radius1 ?=- Radius of planet1
568- 578 F11.8 Rgeo Radius2 ?=- Radius of planet2
580- 590 F11.8 Rgeo Radius3 ?=- Radius of planet3
591- 601 F11.8 Rgeo Radius4 ?=- Radius of planet4
603- 613 F11.8 Rgeo Radius5 ?=- Radius of planet5
615- 624 F10.8 Rgeo Radius6 ?=- Radius of planet6
626- 635 F10.8 Rgeo Radius7 ?=- Radius of planet7
637- 646 F10.8 Rgeo Radius8 ?=- Radius of planet8
647- 648 A2 --- ---
649- 662 E14.9 Rgeo e_Radius1 ?=- Radius of planet1 error
664- 677 E14.9 Rgeo e_Radius2 ?=- Radius of planet2 error
679- 692 E14.9 Rgeo e_Radius3 ?=- Radius of planet3 error
694- 707 E14.9 Rgeo e_Radius4 ?=- Radius of planet4 error
709- 722 E14.9 Rgeo e_Radius5 ?=- Radius of planet5 error
724- 737 E14.9 Rgeo e_Radius6 ?=- Radius of planet6 error
739- 752 E14.9 Rgeo e_Radius7 ?=- Radius of planet7 error
754- 767 E14.9 Rgeo e_Radius8 ?=- Radius of planet8 error
768- 769 A2 --- ---
770- 780 F11.8 AU sma1 Semi-major axis of planet1
782- 792 F11.8 AU sma2 Semi-major axis of planet2
794- 804 F11.8 AU sma3 Semi-major axis of planet3
806- 816 F11.8 AU sma4 Semi-major axis of planet4
818- 828 F11.8 AU sma5 ? Semi-major axis of planet5
830- 840 F11.8 AU sma6 ? Semi-major axis of planet6
842- 852 F11.8 AU sma7 ? Semi-major axis of planet7
854- 864 F11.8 AU sma8 ? Semi-major axis of planet8
865- 866 A2 --- ---
867- 874 E8.3 AU e_sma1 ?=- Semi-major axis of planet1 error
876- 883 E8.3 AU e_sma2 ?=- Semi-major axis of planet2 error
885- 891 E7.3 AU e_sma3 ?=- Semi-major axis of planet3 error
893- 899 E7.3 AU e_sma4 ?=- Semi-major axis of planet4 error
901- 907 E7.3 AU e_sma5 ?=- Semi-major axis of planet5 error
909- 915 E7.3 AU e_sma6 ?=- Semi-major axis of planet6 error
917- 923 E7.3 AU e_sma7 ?=- Semi-major axis of planet7 error
925- 927 A3 AU e_sma8 ?=- Semi-major axis of planet8 error
928- 929 A2 --- ---
930- 939 E10.8 --- ecc1 ?=- Eccentricity of planet1
941- 950 E10.8 --- ecc2 ?=- Eccentricity of planet2
952- 961 E10.8 --- ecc3 ?=- Eccentricity of planet3
963- 971 E9.7 --- ecc4 ?=- Eccentricity of planet4
973- 982 F10.8 --- ecc5 ?=- Eccentricity of planet5
984- 992 F9.7 --- ecc6 ?=- Eccentricity of planet6
994-1003 F10.8 --- ecc7 ?=- Eccentricity of planet7
1005-1014 F10.8 --- ecc8 ?=- Eccentricity of planet8
1015-1016 A2 --- ---
1017-1023 F7.5 --- e_ecc1 ?=- Eccentricity of planet1 error
1025-1031 F7.5 --- e_ecc2 ?=- Eccentricity of planet2 error
1033-1039 F7.5 --- e_ecc3 ?=- Eccentricity of planet3 error
1041-1047 F7.5 --- e_ecc4 ?=- Eccentricity of planet4 error
1049-1055 F7.5 --- e_ecc5 ?=- Eccentricity of planet5 error
1057-1063 F7.5 --- e_ecc6 ?=- Eccentricity of planet6 error
1065-1071 F7.5 --- e_ecc7 ?=- Eccentricity of planet7 error
1073-1075 A3 --- e_ecc8 ?=- Eccentricity of planet8 error
1076-1077 A2 --- ---
1078-1091 E14.9 rad Inc1 ?=- Inclination of planet1
1093-1106 E14.9 rad Inc2 ?=- Inclination of planet2
1108-1122 E15.9 rad Inc3 ?=- Inclination of planet3
1124-1137 E14.9 rad Inc4 ?=- Inclination of planet4
1139-1152 E14.9 rad Inc5 ?=- Inclination of planet5
1154-1167 E14.9 rad Inc6 ?=- Inclination of planet6
1169-1182 E14.9 rad Inc7 ?=- Inclination of planet7
1184-1198 E15.9 rad Inc8 ?=- Inclination of planet8
1199-1200 A2 --- ---
1201-1214 E14.9 rad e_Inc1 ?=- Inclination of planet1 error
1216-1229 E14.9 rad e_Inc2 ?=- Inclination of planet2 error
1231-1244 E14.9 rad e_Inc3 ?=- Inclination of planet3 error
1246-1259 E14.9 rad e_Inc4 ?=- Inclination of planet4 error
1261-1270 F10.8 rad e_Inc5 ?=- Inclination of planet5 error
1272-1281 F10.8 rad e_Inc6 ?=- Inclination of planet6 error
1283-1292 F10.8 rad e_Inc7 ?=- Inclination of planet7 error
1294-1296 A3 rad e_Inc8 ?=- Inclination of planet8 error
1297-1298 A2 --- ---
1299 A1 --- min-mass1 [FT-] True/False for minimum mass1
1301 A1 --- min-mass2 [FT-] True/False for minimum mass2
1303 A1 --- min-mass3 [FT-] True/False for minimum mass3
1305 A1 --- min-mass4 [FT-] True/False for minimum mass4
1307 A1 --- min-mass5 [FT-] True/False for minimum mass5
1309 A1 --- min-mass6 [FT-] True/False for minimum mass6
1311 A1 --- min-mass7 [FT-] True/False for minimum mass7
1313 A1 --- min-mass8 [FT-] True/False for minimum mass8
1314 A1 --- ---
--------------------------------------------------------------------------------
Acknowledgements:
Lokesh Mischra, lokesh.mishra(at)unige.ch
(End) Patricia Vannier [CDS] 05-Dec-2022