J/A+A/679/A112    California and Orion A clouds emission lines  (Tafalla+, 2023)

Characterizing the line emission from molecular clouds. II. A comparative study of California, Perseus, and Orion A. Tafalla M., Usero A., Hacar A. <Astron. Astrophys. 679, A112 (2023)> =2023A&A...679A.112T 2023A&A...679A.112T (SIMBAD/NED BibCode)
ADC_Keywords: Molecular clouds ; Abundances ; Radio lines Keywords: ISM: abundances - ISM: molecules - ISM: individual objects: California - ISM: individual objects: Perseus - ISM: individual objects: Orion A - ISM: structure Abstract: We aim to characterize and compare the molecular-line emission of three clouds whose star-formation rates span one order of magnitude: California, Perseus, and Orion A. We used stratified random sampling to select positions representing the different column density regimes of each cloud and observed them with the IRAM 30 m telescope. We covered the 3 mm wavelength band and focused our analysis on CO, HCN, CS, HCO+, HNC, and N2H+. We find that the line intensities depend most strongly on the H2 column density, with which they are tightly correlated. A secondary effect, especially visible in Orion A, is a dependence of the line intensities on the gas temperature. We explored a method that corrects for temperature variations and show that, when it is applied, the emission from the three clouds behaves very similarly. CO intensities vary weakly with column density, while the intensity of traditional dense-gas tracers such as HCN, CS, and HCO+ varies almost linearly with column density. N2H+ differs from all other species in that it traces only cold dense gas. The intensity of the rare HCN and CS isotopologs reveals additional temperature-dependent abundance variations. Overall, the clouds have similar chemical compositions that, as the depth increases, are sequentially dominated by photodissociation, gas-phase reactions, molecular freeze-out, and stellar feedback in the densest parts of Orion A. Our observations also allowed us to calculate line luminosities for each cloud, and a comparison with literature values shows good agreement. We used our HCN(1-0) data to explore the behavior of the HCN conversion factor, finding that it is dominated by the emission from the outermost cloud layers. It also depends strongly on the gas kinetic temperature. Finally, we show that the HCN/CO ratio provides a gas volume density estimate, and that its correlation with the column density resembles that found in extragalactic observations. Description: The following two tables correspond to Tables B.1 and B.2 of the paper. They contain the results from the stratified sampling observations of the California cloud (80 positions) and Orion A cloud (119 positions). Each table lists the coordinates of each observed position, its estimated H2 column density, and the velocity-integrated intensities for the brightest lines in the 3mm wavelength band as observed with the IRAM-30m telescope. The first digit in the source name indicates the column density bin to which it belongs (10 denotes the highest column density bin). The line intensities are in the main beam brightness temperature scale. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 278 80 California cloud data tableb2.dat 278 119 Orion A data -------------------------------------------------------------------------------- See also: J/A+A/642/A76 : California molecular cloud CO datacubes (Zhang+, 2020) J/ApJ/921/23 : C18O dense cores identified in the CMC region (Guo+, 2021) J/ApJS/217/7 : Orion A dense cores based on 1.1mm and C18O (Shimajiri+, 2015 J/ApJS/264/35 : C18O dense cores in Orion A molecular cloud (Takemura+, 2023 Byte-by-byte Description of file: tableb1.dat tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Source name (1) 12- 13 I2 h RAh Right ascension (J2000) 15- 16 I2 min RAm Right ascension (J2000) 18- 21 F4.1 s RAs Right ascension (J2000) 23 A1 --- DE- Declination sign (J2000) 24- 25 I2 deg DEd Declination (J2000) 27- 28 I2 arcmin DEm Declination (J2000) 30- 31 I2 arcsec DEs Declination (J2000) 34- 41 E8.2 cm-2 NH2 H2 column density 44- 50 E7.1 cm-2 e_NH2 H2 uncertainty column density uncertainty 53- 60 E8.2 K.km/s Int1 12CO(1-0) intensity 63- 69 E7.1 K.km/s e_Int1 12CO(1-0) intensity uncertainty 71- 79 E9.2 K.km/s Int2 13CO(1-0) intensity 82- 88 E7.1 K.km/s e_Int2 13CO(1-0) intensity uncertainty 90- 98 E9.2 K.km/s Int3 C18O(1-0) intensity 101-107 E7.1 K.km/s e_Int3 C18O(1-0) intensity uncertainty 109-117 E9.2 K.km/s Int4 HCN(1-0) intensity (1) 120-126 E7.1 K.km/s e_Int4 HCN(1-0) intensity uncertainty 128-136 E9.2 K.km/s Int5 CS(2-1) intensity 139-145 E7.1 K.km/s e_Int5 CS(2-1) intensity uncertainty 147-155 E9.2 K.km/s Int6 HNC(1-0) intensity 158-164 E7.1 K.km/s e_Int6 HNC(1-0) intensity uncertainty 166-174 E9.2 K.km/s Int7 HCO+(1-0) intensity 177-183 E7.1 K.km/s e_Int7 HCO+(1-0) intensity uncertainty 185-193 E9.2 K.km/s Int8 N2H+(1-0) intensity (2) 196-202 E7.1 K.km/s e_Int8 N2H++(1-0) intensity uncertainty 204-212 E9.2 K.km/s Int9 H13CN(1-0) intensity 215-221 E7.1 K.km/s e_Int9 H13CN(1-0) intensity uncertainty 223-231 E9.2 K.km/s Int10 C34S(2-1) intensity 234-240 E7.1 K.km/s e_Int10 C34S(2-1) intensity uncertainty 242-250 E9.2 K.km/s Int11 HN13C(1-0) intensity 253-259 E7.1 K.km/s e_Int11 HN13C(1-0) intensity uncertainty 261-269 E9.2 K.km/s Int12 H13CO+(1-0) intensity 272-278 E7.1 K.km/s e_Int12 H13CO+(1-0) intensity uncertainty -------------------------------------------------------------------------------- Note (1): Source names are CAL-NN_NN for California cloud, ORIA-NN_NN for Orina A cloud. Note (2): For HCN(1-0) and N2H+(1-0), the intensity includes the contribution from all detected hyperfine components. -------------------------------------------------------------------------------- Acknowledgements: Mario Tafalla, m.tafalla (at) oan.es
(End) Patricia Vannier [CDS] 18-Sep-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line