J/A+A/684/A116      XO-2S and XO-2N radial velocities          (Ruggieri+, 2024)

The GAPS Programme at TNG. LIII. New insights on the peculiar XO-2 system. Ruggieri A., Desidera S., Biazzo K., Pinamonti M., Marzari F., Mantovan G., Sozzetti A., Bonomo A.S., Lanza A.F., Malavolta L., Claudi R., Damasso M., Gratton R., Nardiello D., Benatti S., Bignamini A., Andreuzzi G., Borsa F., Cabona L., Knapic C., Molinari E., Pino L., Zingales T. <Astron. Astrophys. 684, A116 (2024)> =2024A&A...684A.116R 2024A&A...684A.116R (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Radial velocities ; Optical Keywords: techniques: radial velocities - planets and satellites: detection - binaries: visual - stars: individual: XO-2S, XO-2N - stars: solar-type Abstract: Planets in binary systems are a fascinating and yet poorly understood phenomenon. Since there are only a few known large-separation systems in which both components host planets, characterizing them is a key target for planetary science. In this paper, we aim to carry out an exhaustive analysis of the interesting XO-2 system, where one component (XO-2N) appears to be a system with only one planet, while the other (XO-2S) has at least three planets. Over the last 9 years, we have collected 39 spectra of XO-2N and 106 spectra of XO-2S with the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) in the framework of the Global Architecture of Planetary Systems (GAPS) project, from which we derived precise radial velocity (RV) and activity indicator measurements. Additional spectroscopic data from the High Resolution Echelle Spectrometer (HIRES) and from the High Dispersion Spectrograph (HDS), and the older HARPS-N data presented in previous papers, have also been used to increase the total time span. We also used photometric data from TESS to search for potential transits that have not been detected yet. For our analysis, we mainly used PyORBIT, an advanced Python tool for the Bayesian analysis of RVs, activity indicators, and light curves. We found evidence for an additional long-period planet around XO-2S and characterized the activity cycle likely responsible for the long-term RV trend noticed for XO-2N. The new candidate is an example of a Jovian analog with msini∼3.7MJ, a∼5.5au, and e=0.09. We also analyzed the stability and detection limits to get some hints about the possible presence of additional planets. Our results show that the planetary system of XO-2S is at least one order of magnitude more massive than that of XO-2N. The implications of these findings for the interpretation of the previously known abundance difference between components are also discussed. Description: We present our high-precision radial velocities and activity indicators obtained from HARPS-N spectra. There are a total of 106 spectra for XO-2S and 39 spectra for XO-2N, gathered between 2014 and 2023 with typical exposure times of 900s. Objects: -------------------------------------------------- RA (2000) DE Designation(s) -------------------------------------------------- 07 48 07.48 +50 13 03.2 XO-2S = TIC 356473029 07 48 06.47 +50 13 32.9 XO-2N = TIC 356473034 -------------------------------------------------- File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 38 106 Radial velocities and chromospheric activity indicator of XO-2S tablea2.dat 66 39 Radial velocities, chromospheric activity indicator, and Bisector Inverse Span of XO-2N -------------------------------------------------------------------------------- See also: J/ApJ/770/36 : APOSTLE transits of XO-2 system (Kundurthy+, 2013) J/ApJ/808/13 : XO-2S and XO-2N chemical composition (Ramirez+, 2015) J/A+A/575/A111 : GAPS V: Global analysis of the XO-2 system (Damasso+, 2015) J/A+A/583/A135 : XO-2N and XO-2S spectra (Biazzo+, 2015) Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 F7.1 d BJD [56909.7/60040.4] Barycentric Julian Date, BJD-2400000 9- 15 F7.1 m/s RV Radial Velocity 17- 20 F4.2 m/s e_RV 1-sigma uncertainty in RV 22- 29 F8.6 --- S Chromospheric activity index S-index 31- 38 F8.6 --- e_S 1-sigma uncertainty in S-index -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 F7.1 d BJD [56998.6/60075.4] Barycentric Julian Date, BJD-2400000 9- 15 F7.1 m/s RV Radial Velocity 17- 23 F7.4 m/s e_RV 1-sigma uncertainty in RV 25- 32 F8.6 --- S Chromospheric activity index S-index 34- 41 F8.6 --- e_S 1-sigma uncertainty in S-index 43- 55 E13.6 km/s BIS Bisector Inverse Span 57- 66 F10.8 km/s e_BIS 1-sigma uncertainty in BIS -------------------------------------------------------------------------------- Acknowledgements: Alessandro Ruggieri, alessandro.ruggieri.1(at)phd.unipd.it References: Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28 Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111 Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15 Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64 Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136 Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135 Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118 Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90 Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E Bonomo et al., Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107 Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G Mancini et al., Paper XVI 2018A&A...613A..41M 2018A&A...613A..41M, Cat. J/A+A/613/A41 Lanza et al., Paper XVII 2018A&A...616A.155L 2018A&A...616A.155L, Cat. J/A+A/616/A155 Barbato et al., Paper XVIII 2019A&A...621A.110B 2019A&A...621A.110B, Cat. J/A+A/621/A110 Borsa et al., Paper XIX 2019A&A...631A..34B 2019A&A...631A..34B, Cat. J/A+A/631/A34 Pino et al., Paper XX 2020ApJ...894L..27P 2020ApJ...894L..27P Carleo et al., Paper XXI 2020A&A...638A...5C 2020A&A...638A...5C, Cat. J/A+A/638/A5 Guilluy et al., Paper XXII 2020A&A...639A..49G 2020A&A...639A..49G Benatti et al., Paper XXIII 2020A&A...639A..50B 2020A&A...639A..50B, Cat. J/A+A/639/A50 Barbato et al., Paper XXIV 2020A&A...641A..68B 2020A&A...641A..68B Baratella et al., Paper XXV 2020A&A...640A.123B 2020A&A...640A.123B Di Maio et al., Paper XXVI 2020A&A...641A..68B 2020A&A...641A..68B Damasso et al., Paper XXVII 2020A&A...642A.133D 2020A&A...642A.133D, Cat. J/A+A/642/A133 Carleo et al., Paper XXVIII 2021A&A...645A..71C 2021A&A...645A..71C Scandariato et al., Paper XXIX 2021A&A...646A.159S 2021A&A...646A.159S Rainer et al., Paper XXX 2021A&A...649A..29R 2021A&A...649A..29R Borsa et al., Paper XXXI 2021A&A...653A.104B 2021A&A...653A.104B Fossati et al., Paper XXXII 2022A&A...658A.136F 2022A&A...658A.136F Borsa et al., Paper XXXIII 2022A&A...663A.141B 2022A&A...663A.141B Maldonado et al., Paper XXXIV 2022A&A...663A.142M 2022A&A...663A.142M Mancini et al., Paper XXXVI 2022A&A...664A.162M 2022A&A...664A.162M, Cat. J/A+A/664/A162 Nardiello et al., Paper XXXVII 2022A&A...664A.163N 2022A&A...664A.163N, Cat. J/A+A/664/A163 Guilluy et al., Paper XXXVIII 2022A&A...665A.104G 2022A&A...665A.104G Carleo et al., Paper XXXIX 2022AJ....164..101C 2022AJ....164..101C Naponiello et al., Paper XL 2022A&A...667A...8N 2022A&A...667A...8N Pino et al., Paper XLI 2022A&A...668A.176P 2022A&A...668A.176P Damasso et al., Paper XLII 2023A&A...672A.126D 2023A&A...672A.126D Maldonado et al., Paper XLIII 2023A&A...674A.132M 2023A&A...674A.132M Rainer et al., Paper XLIV 2023A&A...676A..90R 2023A&A...676A..90R, Cat. J/A+A/676/A90 Fossati et al., Paper XLV 2023A&A...676A..99F 2023A&A...676A..99F Pinamonti et al., Paper XLVI 2023A&A...677A.122P 2023A&A...677A.122P, Cat. J/A+A/677/A122 Sozzetti et al., Paper XLVII 2023A&A...677L..15S 2023A&A...677L..15S Turrini et al., Paper XLVIII 2023A&A...679A..55T 2023A&A...679A..55T Mantovan et al., Paper XLIX 2024A&A...682A.129M 2024A&A...682A.129M, Cat. J/A+A/682/A129 Carleo et al., Paper L 2024A&A...682A.135C 2024A&A...682A.135C Claudi et al., Paper LI 2024A&A...682A.136C 2024A&A...682A.136C Di Maio et al., Paper LII 2024A&A...683A.239D 2024A&A...683A.239D
(End) Alessandro Ruggieri [Unipd, Italy], Patricia Vannier [CDS] 19-Jan-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line