J/A+A/684/A18 XLSSC NIKA2 sample images (Adam+, 2024)
The XXL Survey LI. Pressure profile and YSZ-M scaling relation in three low-mass
galaxy clusters at z ∼ 1 observed with NIKA2.
Adam R., Ricci M., Eckert D., Ade P., Ajeddig H., Altieri B., Andre P.,
Artis E., Aussel H., Beelen A., Benoist C., Benoit A., Berta S., Bing L.,
Birkinshaw M., Bourrion O., Boutigny D., Bremer M., Calvo M., Cappi A.,
Catalano A., De Petris M., Desert F.-X., Doyle S., Driessen E.F.C.,
Faccioli L., Ferrari C., Gastaldello F., Giles P., Gomez A., Goupy J.,
Hahn O., Hanser C., Horellou C., Keruzore F., Koulouridis E., Kramer C.,
Ladjelate B., Lagache G., Leclercq S., Lestrade J.-F., Macias-Perez J.F.,
Madden S., Maughan B., Maurogordato S., Maury A., Mauskopf P.,
Monfardini A., Munoz-Echeverria M., Pacaud F., Perotto L., Pierre M.,
Pisano G., Pompei E., Ponthieu N., Reveret V., Rigby A., Ritacco A.,
Romero C., Roussel H., Ruppin F., Sereno M., Schuster K., Sievers A.,
Tintore Vidal G., Tucker C., Zylka R.
<Astron. Astrophys. 684, A18 (2024)>
=2024A&A...684A..18A 2024A&A...684A..18A (SIMBAD/NED BibCode)
ADC_Keywords: Clusters, galaxy ; Radio sources
Keywords: techniques: high angular resolution -
galaxies: clusters: intracluster medium
Abstract:
The thermodynamical properties of the intracluster medium (ICM) are
driven by scale-free gravitational collapse, but they also reflect the
rich astrophysical processes at play in galaxy clusters. At low masses
(∼1014M☉) and high redshift (z≳1), these properties remain
poorly constrained observationally, due to the difficulty in obtaining
resolved and sensitive data.
This paper aims at investigating the inner structure of the ICM as
seen through the Sunyaev-Zel'dovich (SZ) effect in this regime of mass
and redshift. Focus is set on the thermal pressure profile and the
scaling relation between SZ flux and mass, namely the YSZ-M scaling
relation.
The three galaxy clusters XLSSC 072 (z=1.002), XLSSC 100 (z=0.915),
and XLSSC 102 (z=0.969), with M500 ∼2x1014M☉, were selected
from the XXL X-ray survey and observed with the NIKA2 millimeter
camera to image their SZ signal. XMM-Newton X-ray data were used in
complement to the NIKA2 data to derive masses based on the YX-M
relation and the hydrostatic equilibrium. Results. The SZ images of
the three clusters, along with the X-ray and optical data, indicate
dynamical activity related to merging events. The pressure profile is
consistent with that expected for morphologically disturbed systems,
with a relatively flat core and a shallow outer slope. Despite
significant disturbances in the ICM, the three high-redshift low-mass
clusters follow remarkably well the YSZ-M relation expected from
standard evolution.
These results indicate that the dominant physics that drives cluster
evolution is already in place by z∼1, at least for systems with masses
above M500∼1014M☉.
Description:
The NIKA2 observations used in this paper were conducted from January
2018 to February 202 under projects 179-17, 094-18, 208-18, 093-19,
218-19, and 076-20.
The surface brightness maps at 150 and 260GHz, the transfer function
associated with the data reduction, and noise Monte Carlo realizations
of the signal are released.
The transfer function associated with XLSSC 102 data can be visualized
in Ricci et al. (2020A&A...642A.126R 2020A&A...642A.126R), Figure A.1.
Objects:
-----------------------------------------------------------------
RA (2000) DE Designation(s)
-----------------------------------------------------------------
02 15 23.99 -03 43 32.1 XLSSC 072 = XCLASS 345
02 06 11.40 -06 11 29.2 XLSSC 100 = XCLASS 22723
02 05 15.90 -04 39 07.5 XLSSC 102 = ACT-CL J0205.2-0439
-----------------------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tf072.dat 13 31 Transfer function of the XLSSC072 150 GHz map
tf100.dat 13 31 Transfer function of the XLSSC100 150 GHz map
tf102.dat 13 31 Transfer function of the XLSSC102 150 GHz map
list.dat 142 12 List of fits files
fits/* . 12 Individual fits files
--------------------------------------------------------------------------------
See also:
IX/49 : XXL Survey: First results (Pierre+, 2016)
IX/52 : XXL Survey. DR2 (Chiappetti+, 2018)
J/A+A/638/A46 : The XXL Survey. XLI. GMRT XXL-N 610MHz (Slaus+, 2020)
J/A+A/638/A45 : Obscuration properties of red AGNs in XXL-N (Masoura+, 2020)
J/A+A/663/A2 : XXL Survey. X-ray emission in opt. select. group
(Crossett+, 2022)
J/A+A/684/A19 : The XXL Survey. LII. (Slaus+, 2024)
Byte-by-byte Description of file: tf072.dat tf100.dat tf102.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 F6.4 arcmin-1 k Wavenumber
8- 13 F6.4 --- T Transfer function (signal transmission)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: list.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 F9.5 deg RAdeg Right Ascension of center (J2000)
10- 18 F9.5 deg DEdeg Declination of center (J2000)
20- 22 I3 --- Nx Number of pixels along X-axis
24- 26 I3 --- Ny Number of pixels along Y-axis
28- 30 I3 --- Nz ? Number of slices for the datacubes
32- 34 I3 MHz Freq Frequency of the observation
36- 54 A19 "datime" Obs.date Observation date
56- 60 I5 Kibyte size Size of FITS file
62- 93 A32 --- FileName Name of FITS file, in subdirectory fits
95-142 A48 --- Title Title of the FITS file
--------------------------------------------------------------------------------
Acknowledgements:
Remi Adam, remi.adam(at)oca.eu>
References:
XXL DR1, Cat. IX/49
Pierre et al., Paper I 2016A&A...592A...1P 2016A&A...592A...1P
Pacaud et al., Paper II 2016A&A...592A...2P 2016A&A...592A...2P
Giles et al., Paper III 2016A&A...592A...3G 2016A&A...592A...3G
Lieu et al., Paper IV 2016A&A...592A...4L 2016A&A...592A...4L
Mantz et al. Paper V 2014ApJ...794..157M 2014ApJ...794..157M
Fotopoulou et al., Paper VI 2016A&A...592A...5F 2016A&A...592A...5F
Pompei et al., Paper VII 2016A&A...592A...6P 2016A&A...592A...6P
Adami et al., Paper VIII 2016A&A...592A...7A 2016A&A...592A...7A
Baran et al., Paper IX 2016A&A...592A...8B 2016A&A...592A...8B
Ziparo et al., Paper X 2016A&A...592A...9Z 2016A&A...592A...9Z
Smolic et al., Paper XI 2016A&A...592A..10S 2016A&A...592A..10S
Koulouridis et al., Paper XII 2016A&A...592A..11K 2016A&A...592A..11K
Eckert et al., Paper XIII 2016A&A...592A..12E 2016A&A...592A..12E
Lidman et al., Paper XIV 2016PASA...33....1L 2016PASA...33....1L
Lavoie et al., Paper XV 2016MNRAS.462.4141L 2016MNRAS.462.4141L
XXL DR2, Cat. IX/52
Marulli et al., Paper XVI 2018A&A...620A...1M 2018A&A...620A...1M
Mantz et al., Paper XVII 2018A&A...620A...2M 2018A&A...620A...2M
Butler et al., Paper XVIII 2018A&A...620A...3B 2018A&A...620A...3B
Koulouridis et al., Paper XIX 2018A&A...620A...4K 2018A&A...620A...4K
Adami et al., Paper XX 2018A&A...620A...5A 2018A&A...620A...5A
Melnyk et al., Paper XXI 2018A&A...620A...6M 2018A&A...620A...6M
Guglielmo et al., Paper XXII 2018A&A...620A...7G 2018A&A...620A...7G
Farahi et al., Paper XXIII 2018A&A...620A...8F 2018A&A...620A...8F
Faccioli et al., Paper XXIV 2018A&A...620A...9F 2018A&A...620A...9F
Pacaud et al., Paper XXV 2018A&A...620A..10P 2018A&A...620A..10P
Ciliegi et al., Paper XXVI 2018A&A...620A..11C 2018A&A...620A..11C
Chiappetti et al., Paper XXVII 2018A&A...620A..12C 2018A&A...620A..12C
Ricci et al., Paper XXVIII 2018A&A...620A..13R 2018A&A...620A..13R
Smolcic et al., Paper XXIX 2018A&A...620A..14S 2018A&A...620A..14S
Guglielmo et al., Paper XXX 2018A&A...620A..15G 2018A&A...620A..15G
Butler et al., Paper XXXI 2018A&A...620A..16B 2018A&A...620A..16B
Plionis et al., Paper XXXII 2018A&A...620A..17P 2018A&A...620A..17P
Logan et al., Paper XXXIII 2018A&A...620A..18L 2018A&A...620A..18L
Horellou et al., Paper XXXIV 2018A&A...620A..19H 2018A&A...620A..19H
Koulouridis et al., Paper XXXV 2018A&A...620A..20K 2018A&A...620A..20K
Butler et al., Paper XXXVI 2019A&A...625A.111B 2019A&A...625A.111B
Guglielmo et al., Paper XXXVII 2019A&A...625A.112G 2019A&A...625A.112G
Sereno et al., Paper XXXVIII 2019A&A...632A..54S 2019A&A...632A..54S
Eyles et al., Paper XXXIX 2020A&A...633A...6E 2020A&A...633A...6E
Masoura et al., Paper XL 2020A&A...638A..45M 2020A&A...638A..45M, Cat. J/A+A/638/A45
Slaus et al., Paper XLI 2020A&A...638A..46S 2020A&A...638A..46S, Cat. J/A+A/638/A46
Trudeau et al., Paper XLII 2020A&A...642A.124T 2020A&A...642A.124T
Ceraj et al., Paper XLIII 2020A&A...642A.125C 2020A&A...642A.125C
Ricci et al., Paper XLIV 2020A&A...642A.126R 2020A&A...642A.126R
Crossett et al., Paper XLV 2022A&A...663A...2C 2022A&A...663A...2C, Cat. J/A+A/663/A2
Garrel et al., Paper XLVI 2022A&A...663A...3G 2022A&A...663A...3G
Giles et al., Paper XLVII 2022MNRAS.511.1227G 2022MNRAS.511.1227G
Duffy et al., Paper XLVIII 2022MNRAS.512.2525D 2022MNRAS.512.2525D
Trudeau et al., Paper XLIX 2022MNRAS.515.2529T 2022MNRAS.515.2529T
Bhargava et al., Paper L 2023A&A...673A..92B 2023A&A...673A..92B
Slaus et al., Paper LII 2023A&A...684A..19S 2023A&A...684A..19S, Cat. J/A+A/684/A19
(End) Remi Adam [France], Patricia Vannier [CDS] 12-Oct-2023