J/A+AS/108/25       Cepheids fundamental parameters II.        (Bersier+, 1994)

Fundamental parameters of Cepheids: II. Radial velocity data BERSIER D., BURKI G., MAYOR M., DUQUENNOY A. <Astron. Astrophys. Suppl. Ser. 108, 25 (1994)> =1994A&AS..108...25B 1994A&AS..108...25B (SIMBAD/NED Reference)
ADC_Keywords: Stars, variable; Radial velocities Keywords: stars: Cepheids - stars: oscillations - stars: DL Cas, W Sgr File Summary: -------------------------------------------------------------------------------- File Name Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table2 58 1641 Radial velocities for 40 Cepheids table3 597 47 Fourier coefficients of the radial velocity curves table3.tex 122 249 LaTeX version of table3 -------------------------------------------------------------------------------- Byte-per-byte Description of file: table2 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Name Star name 12- 30 A19 --- HD HD number or BD number or coordinates 1900 32- 43 F12.4 d JD Date of measurement in Julian day 46- 51 F6.2 km/s RV Radial velocity 54- 57 F4.2 km/s e_RV Rms uncertainty on the radial velocity -------------------------------------------------------------------------------- Byte-per-byte Description of file: table3 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 12 A11 --- Name Name 14- 22 F9.7 d-1 Freq. Frequency 27- 32 F6.2 km/s A0 Amplitude A0 33 A1 --- n_A0 A ) indicates that for the binaries and suspected binaries, the center-of-mass velocity has been set to zero 41- 44 F4.2 km/s eps(fit) standard deviation around the fit 46- 56 F11.3 d T0 epoch (HJD) 58- 63 F6.3 km/s A1 amplitude of the harmonic Freq. 73- 78 F6.4 --- L1 []? Lanczos coefficient 82- 87 F6.3 rad phi1 phase of Freq. 89- 93 F5.3 km/s A2 []? amplitude of the harmonic 2*Freq. 103-108 F6.4 --- L2 []? Lanczos coefficient 112-117 F6.3 rad phi2 []? phase of the harmonic 2*Freq. 119-123 F5.3 km/s A3 []? amplitude of the harmonic 3*Freq. 133-138 F6.4 --- L3 []? Lanczos coefficient 142-147 F6.3 rad phi3 []? phase of the harmonic 3*Freq. 149-153 F5.3 km/s A4 []? amplitude of the harmonic 4*Freq. 163-168 F6.4 --- L4 []? Lanczos coefficient 172-177 F6.3 rad phi4 []? phase of the harmonic 4*Freq. 179-183 F5.3 km/s A5 []? amplitude of the harmonic 5*Freq. 193-198 F6.4 --- L5 []? Lanczos coefficient 202-207 F6.3 rad phi5 []? phase of the harmonic 5*Freq. 209-213 F5.3 km/s A6 []? amplitude of the harmonic 6*Freq. 223-228 F6.4 --- L6 []? Lanczos coefficient 232-237 F6.3 rad phi6 []? phase of the harmonic 6*Freq. 239-243 F5.3 km/s A7 []? amplitude of the harmonic 7*Freq. 253-258 F6.4 --- L7 []? Lanczos coefficient 262-267 F6.3 rad phi7 []? phase of the harmonic 7*Freq. 269-273 F5.3 km/s A8 []? amplitude of the harmonic 8*Freq. 283-288 F6.4 --- L8 []? Lanczos coefficient 292-297 F6.3 rad phi8 []? phase of the harmonic 8*Freq. 299-303 F5.3 km/s A9 []? amplitude of the harmonic 9*Freq. 313-318 F6.4 --- L9 []? Lanczos coefficient 322-327 F6.3 rad phi9 []? phase of the harmonic 9*Freq. 329-333 F5.3 km/s A10 []? amplitude of the harmonic 10*Freq. 343-348 F6.4 --- L10 []? Lanczos coefficient 352-357 F6.3 rad phi10 []? phase of the harmonic 10*Freq. 359-363 F5.3 km/s A11 []? amplitude of the harmonic 11*Freq. 373-378 F6.4 --- L11 []? Lanczos coefficient 382-387 F6.3 rad phi11 []? phase of the harmonic 11*Freq. 389-393 F5.3 km/s A12 []? amplitude of the harmonic 12*Freq. 403-408 F6.4 --- L12 []? Lanczos coefficient 412-417 F6.3 rad phi12 []? phase of the harmonic 12*Freq. 419-423 F5.3 km/s A13 []? amplitude of the harmonic 13*Freq. 433-438 F6.4 --- L13 []? Lanczos coefficient 442-447 F6.3 rad phi13 []? phase of the harmonic 13*Freq. 449-453 F5.3 km/s A14 []? amplitude of the harmonic 14*Freq. 463-468 F6.4 --- L14 []? Lanczos coefficient 472-477 F6.3 rad phi14 []? phase of the harmonic 14*Freq. 479-483 F5.3 km/s A15 []? amplitude of the harmonic 15*Freq. 493-498 F6.4 --- L15 []? Lanczos coefficient 502-507 F6.3 rad phi15 []? phase of the harmonic 15*Freq. 509-513 F5.3 km/s A16 []? amplitude of the harmonic 16*Freq. 523-528 F6.4 --- L16 []? Lanczos coefficient 532-537 F6.3 rad phi16 []? phase of the harmonic 16*Freq. 539-543 F5.3 km/s A17 []? amplitude of the harmonic 17*Freq. 553-558 F6.4 --- L17 []? Lanczos coefficient 562-567 F6.3 rad phi17 []? phase of the harmonic 17*Freq. 569-573 F5.3 km/s A18 []? amplitude of the harmonic 18*Freq. 583-588 F6.4 --- L18 []? Lanczos coefficient 592-597 F6.3 rad phi18 []? phase of the harmonic 18*Freq. -------------------------------------------------------------------------------- Note on the Lanczos coefficients A finite Fourier series is a sum, n=1,...,N: f(x) = A0/2 + sum( An*cos(nx) + Bn*sin(nx) ) Originally, the Lanczos coefficients have been introduced to solve divergence problems that appear when differentiating a Fourier series. The Lanczos coefficient of order n is defined as sin(n*pi/N) Ln = ----------- (n*pi/N) where n is smaller or equal to N. From the definition, we see that Ln is always between 0 and 1. A Fourier series with Lanczos factors will be f(x) = A0/2 + sum( Ln*[An*cos(nx) + Bn*sin(nx)] ) A useful application is the attenuation of the Gibbs phenomenon. At the points where the function presents a discontinuity, there is a problem of convergence of the Fourier series, even with a large number of harmonics. The use of Lanczos factors avoids too large differences between the function and its finite Fourier series at the discontinuities. Another example is the fitting of a Fourier series on the light curve of a variable star. Taking too many harmonics will produce an "overfitting", that is, the fitted curve will present unphysical features. The Lanczos coefficients make the curve smoother and more realistic. A useful reference where the definition and examples can be found: Arfken G., 1970, Mathematical methods for physicists, 2nd edition, Academic Press, New York Another reference, more specialised: Lanczos C., 1956, Applied Analysis, Prentice-Hall, Englewood Cliffs (New Jersey) --------------------------------------------------------------------------------
(End) Patricia Bauer [CDS] 26-May-1994
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line