J/A+AS/109/293           Heterochromatic extinction.          I. (Grebel+, 1995)

Heterochromatic extinction. I. Dependence of interstellar extinction on stellar temperature, surface gravity, and metallicity. GREBEL E.K., ROBERTS W.J. <Astron. Astrophys. Suppl. Ser. 109, 293 (1995)> =1995A&AS..109..293G 1995A&AS..109..293G (SIMBAD/NED Reference)
ADC_Keywords: Extinction; Interstellar medium; Stars, atmospheres Keywords: ISM: dust, extinction - techniques: photometric - stars: fundamental parameters File Summary: -------------------------------------------------------------------------------- File Name Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file coeff1 64 168 *Rational polynomial coefficients coeff2 215 168 *Actual coefficients diffb 139 638 Differential interstellar extinction in UBVRI diffw 114 638 Differential interstellar extinction in CMT1T2 totb 95 638 Total interstellar extinction in UBVRI totw 75 638 Total interstellar extinction in CMT1T2 -------------------------------------------------------------------------------- Note on tables coeff1, coeff2: These tables show the coefficients of fits purely linear in temperature colour to the interstellar extinctions for all passbands considered. The lowest temperature model, 3500K, was excluded from ALL fits to B-V, because it badly behaved there. The same temperature was also excluded from the fits to V-I and M-T2 for [Fe/H]=-2.0, because these temperature colours are not monotonic there. -------------------------------------------------------------------------------- Byte-by-byte Description of file: totb -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Star Star type (1) 4- 7 F4.1 Sun [Fe/H] Metallicity 10- 15 F6.0 K Teff Effective temperature 19- 25 F7.5 mag A(U)X Total interstellar extinction in U for airmass 1 (because U filter is defined by atmospheric cutoff) 29- 35 F7.5 mag A(B)X Total interstellar extinction in B for airmass 1 (to allow calculation of U-B.) 39- 45 F7.5 mag A(B) Total interstellar extinction in B for airmass 0 49- 55 F7.5 mag A(V) Total interstellar extinction in V for airmass 0 59- 65 F7.5 mag A(R) Total interstellar extinction in R for airmass 0 69- 75 F7.5 mag A(I) Total interstellar extinction in I for airmass 0 79- 85 F7.5 --- R(V) Ratio of total to differential extinction 89- 95 F7.5 --- R(V)/R(V0) R(V0): same ratio as R(V) but for star with standard spectrum, i.e. T_eff=17000, log(g)=5.0, and [Fe/H]=0. -------------------------------------------------------------------------------- Note (1): MS = Main Sequence, RG = Red Giants (log(g)=2.5), SG = SuperGiants (i.e., the lowest surface gravity for that temperature in the Kurucz model family). -------------------------------------------------------------------------------- Byte-by-byte Description of file: diffb -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Star Star type (1) 4- 7 F4.1 Sun [Fe/H] Metallicity 9- 14 F6.0 K Teff effective temperature 17- 23 F7.4 mag U-B (U-B) colour index 26- 31 F6.4 mag E(U-B) differential interstellar extinction in (U-B) 34- 39 F6.4 --- R1 E(U-B)/E(B-V) ratio 42- 48 F7.4 mag B-V (B-V) colour index 51- 56 F6.4 mag E(B-V) differential interstellar extinction in (B-V) 59- 64 F6.4 --- R2 E(B-V)/E(B-V) ratio 67- 73 F7.4 mag V-R (V-R) colour index 76- 81 F6.4 mag E(V-R) differential interstellar extinction in (V-R) 84- 89 F6.4 --- R3 E(V-R)/E(B-V) ratio 92- 98 F7.4 mag R-I (R-I) colour index 101-106 F6.4 mag E(R-I) differential interstellar extinction in (R-I) 109-114 F6.4 --- R4 E(R-I)/E(B-V) ratio 117-123 F7.4 mag V-I (V-I) colour index 126-131 F6.4 mag E(V-I) differential interstellar extinction in (V-I) 134-139 F6.4 --- R5 E(V-I)/E(B-V) ratio -------------------------------------------------------------------------------- Note (1): MS = Main Sequence, RG = Red Giants (log(g)=2.5), SG = SuperGiants (i.e., the lowest surface gravity for that temperature in the Kurucz model family). -------------------------------------------------------------------------------- Byte-by-byte Description of file: totw -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Star Star type (1) 4- 7 F4.1 Sun [Fe/H] Metallicity 10- 15 F6.0 K Teff Effective temperature 19- 25 F7.5 mag A(C) Total interstellar extinction in C for airmass 0 29- 35 F7.5 mag A(M) Total interstellar extinction in M for airmass 0 39- 45 F7.5 mag A(T1) Total interstellar extinction in T1 for airmass 0 49- 55 F7.5 mag A(T2) Total interstellar extinction in T2 for airmass 0 59- 65 F7.5 --- R(T2) Ratio of total to differential extinction 69- 75 F7.5 --- R(T2)/R(V0) R(V0): same ratio as R(T2) but for star with standard spectrum, i.e. T_eff=17000, log(g)=5.0, and [Fe/H]=0.0 -------------------------------------------------------------------------------- Note (1): MS = Main Sequence, RG = Red Giants (log(g)=2.5), SG = SuperGiants (i.e., the lowest surface gravity for that temperature in the Kurucz model family). -------------------------------------------------------------------------------- Byte-by-byte Description of file: diffw -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Star Star type (1) 4- 7 F4.1 Sun [Fe/H] Metallicity 9- 14 F6.0 K Teff effective temperature 17- 23 F7.4 mag C-M (C-M) colour index 26- 31 F6.4 mag E(C-M) differential interstellar extinction in (C-M) 34- 39 F6.4 --- R1 E(C-M)/E(M-T2) ratio 42- 48 F7.4 mag M-T1 (M-T1) colour index 51- 56 F6.4 mag E(M-T1) differential interstellar extinction in (M-T1) 59- 64 F6.4 --- R2 E(M-T1)/E(M-T2) ratio 67- 73 F7.4 mag T1-T2 (T1-T2) colour index 76- 81 F6.4 mag E(T1-T2) differential interstellar extinction in (T1-T2) 84- 89 F6.4 --- R3 E(T1-T2)/E(M-T2) ratio 92- 98 F7.4 mag M-T2 (M-T2) colour index 101-106 F6.4 mag E(M-T2) differential interstellar extinction in (M-T2) 109-114 F6.4 --- R4 E(M-T2)/E(M-T2) ratio -------------------------------------------------------------------------------- Note (1): MS = Main Sequence, RG = Red Giants (log(g)=2.5), SG = SuperGiants (i.e., the lowest surface gravity for that temperature in the Kurucz model family). -------------------------------------------------------------------------------- Byte-by-byte Description of file: coeff1 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Filter Filters or quantity involved (1) 4- 8 A5 --- Band Quantity, e.g., filter or colour 12- 14 F3.1 [cm/s2] logg []? Surface gravity 15 A1 --- n_logg [m ] Lowest surface gravity model when there is no value for logg (2) 19- 22 F4.1 [Sun] [Fe/H] Metallicity 27 I1 --- num Numerator degree (3) 33 I1 --- den Denominator degree (3) 40- 49 E10.4 --- MaxDev Largest deviation (4) 52- 57 F6.3 --- TCmin Lower boundary of the valid range of temperature colour for that fit (5) 60- 64 F5.3 --- TCmax Upper boundary of the valid range of temperature colour for that fit (5) -------------------------------------------------------------------------------- Note (1): UB = U, U-B BR = B, B-R BV = V, B-V VI = V-I RV = R_V = A_V/E(B-V) CM = C, C-M M1 = M, M-T1 M2 = M-T2 R2 = R-T2 Note (2): 'm' means the lowest surface gravity model for that temperature in the Kurucz models, i.e., the SG=supergiants Note (3): Degree of the numerator and the denominator of the best fitting rational polynomial found (in some cases a linear fit was chosen without searching for a higher order fit). The numerator always stars with a_0, so there is one more coefficient in the numerator than the degree. The denominator starts with b_1. Note (4): Largest deviation in extinction of the rational polynomial from any of the data points in the interstellar extinction table (dif* and tot*) for that fit, as returned by the Numerical Recipes routine 'ratlsq'. Note (5): For the ISM the TCs are B-V and M-T2. -------------------------------------------------------------------------------- Byte-by-byte Description of file: coeff2 -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 A5 --- Band Quantity, e.g., filter or colour 10- 12 F3.1 [cm/s2] logg []? Surface gravity 13 A1 --- n_logg [m ] Lowest surface gravity model when there is no value for logg (1) 17- 20 F4.1 [Sun] [Fe/H] Metallicity 22- 32 E11.4 --- a0 Coefficient a0 in the numerator 34- 44 E11.4 --- a1 Coefficient a1 in the numerator 46- 56 E11.4 --- a2 []? Coefficient a2 in the numerator 58- 68 E11.4 --- a3 []? Coefficient a3 in the numerator 70- 80 E11.4 --- a4 []? Coefficient a4 in the numerator 82- 92 E11.4 --- a5 []? Coefficient a5 in the numerator 94-104 E11.4 --- a6 []? Coefficient a6 in the numerator 106-116 E11.4 --- a7 []? Coefficient a7 in the numerator 118-128 E11.4 --- a8 []? Coefficient a8 in the numerator 133-143 E11.4 --- b1 []? Coefficient b1 in the denominator 145-155 E11.4 --- b2 []? Coefficient b2 in the denominator 157-167 E11.4 --- b3 []? Coefficient b3 in the denominator 169-179 E11.4 --- b4 []? Coefficient b4 in the denominator 181-191 E11.4 --- b5 []? Coefficient b5 in the denominator 193-203 E11.4 --- b6 []? Coefficient b6 in the denominator 205-215 E11.4 --- b7 []? Coefficient b7 in the denominator -------------------------------------------------------------------------------- Note (1): 'm' means the lowest surface gravity model for that temperature in the Kurucz models, i.e., the SG=supergiants --------------------------------------------------------------------------------
(End) Patricia Bauer [CDS] 07-Sep-1994
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line