J/A+AS/133/257    Recombination coefficients for NeII lines    (Kisielius+ 1998)

Recombination coefficients for Ne II lines at nebular temperatures and densities Kisielius R., Storey P.J., Davey A.R., Neale L.T. <Astron. Astrophys. Suppl. Ser. 133, 257 (1998)> =1998A&AS..133..257K 1998A&AS..133..257K (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics Keywords: atomic data - H II regions - planetary nebulae: general Abstract: We calculate total recombination coefficients for Ne2+ + e- and effective recombination coefficients for the formation of selected lines of Ne II. New photoionization data are calculated which accurately map the near threshold resonances and are used to derive recombination coefficients for principal quantum numbers, n≤15, including radiative and dielectronic recombination. Cascading from higher states is included, allowing for the effects of finite electron density in a hydrogenic approximation. The effects of population in the excited states of the recombining ion are investigated. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 39 6 Comparison of calculated and experimental energies for the Ne2+ target states. table2.dat 34 18 Total recombination coefficients table3.dat 106 215 Effective recombination coefficients at electron density Ne=104cm-3. table4.dat 106 239 Effective recombination coefficients at electron density Ne=106cm-3. table5.dat 82 215 Fitting coefficients and maximum fitting errors(%) for effective recombination coefficients. Electron density Ne=104cm-3. table6.dat 51 38 The factors b(Ji,Jf) and wavelengths(in air) for the strongest multiplets of Ne II. -------------------------------------------------------------------------------- See also: VI/64 : Recombination line intensities for hydrogenic ions (Storey+ 1995) J/A+AS/135/359 : HI and HeII fine structure components (Clegg+ 1999) J/A+AS/137/157 : O III recombination coefficients (Kisielius+, 1999) J/A+AS/142/85 : Recombination coefficients for C II lines (Davey+, 2000) J/A+A/387/1135 : NII effective recombination coefficients (Kisielius+, 2002) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- Config Electronic configuration 17- 18 A2 --- Term State term 21- 27 F7.5 Ry Epresent Present calculation energy of term 31- 37 F7.5 Ry Eexperimental Experimental energy of term -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 6 I5 K T Electron temperature 10 A1 --- Case [AB] Plasma state case (1) 13- 16 F4.2 10-12cm3/s RC2 Recombination coefficients at Ne=102cm-3 19- 22 F4.2 10-12cm3/s RC4 Recombination coefficients at Ne=104cm-3 25- 28 F4.2 10-12cm3/s RC5 Recombination coefficients at Ne=105cm-3 31- 34 F4.2 10-12cm3/s RC6 Recombination coefficients at Ne=106cm-3 -------------------------------------------------------------------------------- Note (1): In Case A, all emission lines are assumed to be optically thin. In Case B, lines terminating on the 2Po term are assumed to be thick and no radiative decays to this state arte permitted when calculating the population structure. See Baker & Menzel, (1938ApJ....88...52B 1938ApJ....88...52B) for more details. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2 I1 --- SP1 2S+1 of upper state parent term 3 I1 --- LP1 L of upper state parent term 4 I1 --- PP1 [0,1] Parity of upper state parent term (1) 6 I1 --- n1 Principal quantum number of outer electron 7 A1 --- l1 Orbital quantum number of outer electron 9 I1 --- S1 2S+1 of upper state term 10 I1 --- L1 L of upper state term 11 I1 --- P1 [0,1] Parity of upper state term (1) 14 I1 --- SP2 2S+1 of lower state parent term 15 I1 --- LP2 L of lower state parent term 16 I1 --- PP2 [0,1] Parity of lower state parent term (1) 18 I1 --- n2 Principal quantum number of outer electron 19 A1 --- l2 Orbital quantum number of outer electron 21 I1 --- S2 2S+1 of lower state term 22 I1 --- L2 L of lower state term 23 I1 --- P2 [0,1] Parity of lower state term (1) 26 A1 --- Case [AB] Plasma state case (2) 29- 34 F6.1 nm lambda Transition wavelength in nm 36- 42 F7.3 10-14cm3/s ECR1 Te= 1000K effective recombination coefficient 44- 50 F7.3 10-14cm3/s ECR2 Te= 2000K effective recombination coefficient 53- 58 F6.3 10-14cm3/s ECR3 Te= 3000K effective recombination coefficient 61- 66 F6.3 10-14cm3/s ECR5 Te= 5000K effective recombination coefficient 69- 74 F6.3 10-14cm3/s ECR75 Te=75000K effective recombination coefficient 77- 82 F6.3 10-14cm3/s ECR100 Te=10000K effective recombination coefficient 85- 90 F6.3 10-14cm3/s ECR125 Te=12500K effective recombination coefficient 93- 98 F6.3 10-14cm3/s ECR150 Te=15000K effective recombination coefficient 101-106 F6.3 10-14cm3/s ECR200 Te=20000K effective recombination coefficient -------------------------------------------------------------------------------- Note (1): 0 for even, 1 for odd Note (2): In Case A, all emission lines are assumed to be optically thin. In Case B, lines terminating on the 2Po term are assumed to be thick and no radiative decays to this state arte permitted when calculating the population structure. See Baker & Menzel, (1938ApJ....88...52B 1938ApJ....88...52B) for more details. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2 I1 --- SP1 2S+1 of upper state parent term 3 I1 --- LP1 L of upper state parent term 4 I1 --- PP1 [0,1] Parity of upper state parent term (1) 6 I1 --- n1 Principal quantum number of outer electron 7 A1 --- l1 Orbital quantum number of outer electron 9 I1 --- S1 2S+1 of upper state term 10 I1 --- L1 L of upper state term 11 I1 --- P1 [0,1] Parity of upper state term (1) 14 I1 --- SP2 2S+1 of lower state parent term 15 I1 --- LP2 L of lower state parent term 16 I1 --- PP2 [0,1] Parity of lower state parent term (1) 18 I1 --- n2 Principal quantum number of outer electron 19 A1 --- l2 Orbital quantum number of outer electron 21 I1 --- S2 2S+1 of lower state term 22 I1 --- L2 L of lower state term 23 I1 --- P2 [0,1] Parity of lower state term (1) 26 A1 --- Case [AB] Plasma state case (2) 29- 34 F6.1 nm Lambda Transition wavelength in nm 37- 42 F6.3 10-14cm3/s a Fitting coefficient a (3) 45- 50 F6.3 10-14cm3/s b Fitting coefficient b (3) 53- 58 F6.3 10-14cm3/s c Fitting coefficient c (3) 61- 66 F6.3 10-14cm3/s d Fitting coefficient d (3) 69- 75 F7.4 10-14cm3/s f Fitting coefficient f (3) 78- 81 F4.2 % FitErr Maximum fitting error (in percent) 82 A1 --- Note [*] Asterisks denote line for which fitting is valid from Te=2000K. -------------------------------------------------------------------------------- Note (1): 0 for even, 1 for odd Note (2): In Case A, all emission lines are assumed to be optically thin. In Case B, lines terminating on the 2Po term are assumed to be thick and no radiative decays to this state arte permitted when calculating the population structure. See Baker & Menzel, (1938ApJ....88...52B 1938ApJ....88...52B) for more details. Note (3): Fit parameters and maximum deviations from the calculated data are given for the effective recombination coefficients at Ne=104cm-3. The coefficients are fitted by a least-squares algorithm to the functional form: αeff=10-14*atf(1+b(1-t)+c(1-t)2+d(1-t)3), where t=Te[K]/104, and a, b, c, d and f are constants. Fitting is valid for the whole temperature range studied for all lines except those denoted by asterisk in the last column. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 A19 --- Trans Transition multiplet 21 I1 --- Si 2S+1 of upper term 22 I1 --- Li L of upper term 23 A1 --- --- [_] 24- 26 F3.1 --- Ji J of upper term 28 I1 --- Sf 2S+1 of lower term 29 I1 --- Lf L of lower term 30 A1 --- --- [_] 31- 33 F3.1 --- Jf J of lower term 36- 43 F8.4 nm Lambda Wavelength of transition line 46- 50 F5.3 --- b(Ji,Jf) Splitting factor b(Ji,Jf) defined by Eq.(10). -------------------------------------------------------------------------------- Acknowledgements: Dr. Romas Kisielius
(End) Patricia Bauer [CDS] 02-Jul-1998
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line