J/A+AS/135/405 Grids of stellar models. VIII. (Charbonnel+ 1999)
Grids of stellar models. VIII. From 0.4 to 1.0 MSun at Z=0.020 and Z=0.001,
with the MHD equation of state
Charbonnel C., Dappen W., Schaerer D., Bernasconi P.A., Maeder A.,
Meynet G., Mowlavi N.
<Astron. Astrophys. Suppl. Ser. 135, 405 (1999)>
=1999A&AS..135..405C 1999A&AS..135..405C
ADC_Keywords: Models, evolutionary; Mass loss; HR diagrams
Keywords: stars: evolution - stars: Hertzsprung-Russel diagram -
stars: interiors - stars: low-mass
Abstract:
We present stellar evolutionary models covering the mass range from
0.4 to 1M☉ calculated for metallicities Z=0.020 and 0.001 with
the MHD equation of state (Hummer & Mihalas, 1988ApJ...331..794H 1988ApJ...331..794H,
Mihalas et al., 1988ApJ...331..815M 1988ApJ...331..815M, Daeppen et al.,
1988ApJ...332..261D 1988ApJ...332..261D). A parallel calculation using the OPAL
(Rogers et al., 1996ApJ...456..902R 1996ApJ...456..902R) equation of state has been made
to demonstrate the adequacy of the MHD equation of state in the range
of 1.0 to 0.8M☉ (the lower end of the OPAL tables). Below, down
to 0.4M☉, we have justified the use of the MHD equation of state
by theoretical arguments and the findings of Chabrier & Baraffe
(1997A&A...327.1039C 1997A&A...327.1039C). We use the radiative opacities by Iglesias &
Rogers (1996ApJ...464..943I 1996ApJ...464..943I), completed with the atomic and molecular
opacities by Alexander & Fergusson (1994ApJ...437..879A 1994ApJ...437..879A). We follow
the evolution from the Hayashi fully convective configuration up to
the redgiant tip for the most massive stars, and up to an age of 20Gyr
for the less massive ones. We compare our solar-metallicity models
with recent models computed by other groups and with observations.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 258 2 M=0.4, Z=0.001, Y=0.243, without overshooting
table2.dat 258 3 M=0.5, Z=0.001, Y=0.243, without overshooting
table3.dat 258 6 M=0.6, Z=0.001, Y=0.243, without overshooting
table4.dat 258 11 M=0.7, Z=0.001, Y=0.243, without overshooting
table5.dat 258 51 M=0.8, Z=0.001, Y=0.243, without overshooting
table6.dat 258 51 M=0.9, Z=0.001, Y=0.243, without overshooting
table7.dat 256 51 M=1.0, Z=0.001, Y=0.243, without overshooting
table8.dat 256 3 M=0.4, Z=0.020, Y=0.300, without overshooting
table9.dat 256 4 M=0.5, Z=0.020, Y=0.300, without overshooting
table10.dat 256 5 M=0.6, Z=0.020, Y=0.300, without overshooting
table11.dat 256 11 M=0.7, Z=0.020, Y=0.300, without overshooting
table12.dat 256 14 M=0.8, Z=0.020, Y=0.300, without overshooting
table13.dat 256 51 M=0.9, Z=0.020, Y=0.300, without overshooting
table14.dat 256 51 M=1.0, Z=0.020, Y=0.300, without overshooting
table15.dat 256 3 M=0.4, Z=0.020, Y=0.280, without overshooting
table16.dat 256 4 M=0.5, Z=0.020, Y=0.280, without overshooting
table17.dat 256 5 M=0.6, Z=0.020, Y=0.280, without overshooting
table18.dat 256 7 M=0.7, Z=0.020, Y=0.280, without overshooting
table19.dat 256 14 M=0.8, Z=0.020, Y=0.280, without overshooting
table20.dat 256 51 M=0.9, Z=0.020, Y=0.280, without overshooting
table21.dat 256 51 M=1.0, Z=0.020, Y=0.280, without overshooting
--------------------------------------------------------------------------------
See also:
J/A+AS/96/269 : Paper I. 0.8 to 120 M☉, Z=0.020 (Schaller+, 1992)
J/A+AS/98/523 : Paper II. 0.8 to 120 M☉, Z=0.008 (Schaerer+ 1993)
J/A+AS/101/415 : Paper III. 0.8 to 120 M☉, Z=0.004 (Charbonnel+ 1993)
J/A+AS/102/339 : Paper IV. 0.8 to 120 M☉, Z=0.040 (Schaerer+, 1993)
J/A+AS/103/97 : Paper V. 12 to 120 M☉,
Z=0.001, 0.004, 0.008, 0.020 0.040 (Meynet+ 1994)
J/A+AS/115/339 : Paper VI. HB abd AGB, Z=0.020, 0.001 (Charbonnel+, 1996)
J/A+AS/128/471 : Paper VII. 0.8 to 60M☉, Z=0.10 (Mowlavi+ 1998)
Byte-by-byte Description of file: table*.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- No Number of selected point
4- 17 E14.7 yr Age Age
18- 25 F8.4 solMass Mass Actual mass
27- 32 F6.3 [solLum] log(L) log(luminosity)
34- 38 F5.3 [K] log(Te) log(effective temperature)
40- 47 F8.6 --- Hs H surface abundance (mass fraction)
49- 56 F8.6 --- Hes He surface abundance (mass fraction)
58- 65 F8.6 --- C12 12C surface abundance (mass fraction)
67- 74 F8.6 --- C13 13C surface abundance (mass fraction)
76- 83 F8.6 --- N14 14N surface abundance (mass fraction)
85- 92 F8.6 --- O16 16O surface abundance (mass fraction)
94-101 F8.6 --- O17 17O surface abundance (mass fraction)
103-110 F8.6 --- O18 18O surface abundance (mass fraction)
112-119 F8.6 --- Ne20 20Ne surface abundance (mass fraction)
121-128 F8.6 --- Ne22 22Ne surface abundance (mass fraction)
130-136 F7.5 --- QCC Core mass fraction
143-149 F7.3 [Msun/yr] log(Mdot) log(mass loss rate)
152-156 F5.3 [g/cm3] rhoc log(central density)
158-162 F5.3 [K] log(Tc) log(central temperature)
164-171 F8.6 --- Hc H central abundance (mass fraction)
173-180 F8.6 --- Hec He central abundance (mass fraction)
182-189 F8.6 --- C12c 12C central abundance (mass fraction)
191-198 F8.6 --- C13c 13C central abundance (mass fraction)
200-207 F8.6 --- N14c 14N central abundance (mass fraction)
209-216 F8.6 --- O16c 16O central abundance (mass fraction)
218-225 F8.6 --- O17c 17O central abundance (mass fraction)
227-234 F8.6 --- O18c 18O central abundance (mass fraction)
236-243 F8.6 --- Ne20c 20Ne central abundance (mass fraction)
245-252 F8.6 --- Ne22c 22Ne central abundance (mass fraction)
--------------------------------------------------------------------------------
Acknowledgements: Corinne Charbonnel
History:
Pre-main sequence tracks can be asked to
(End) Patricia Bauer [CDS] 14-Dec-1998