J/A+AS/141/297 H2 total transition probability (Abgrall+, 2000)
Total transition probability and spontaneous radiative dissociation of
B, C, B' and D states of molecular hydrogen.
Abgrall H., Roueff E., Drira I.
<Astron. Astrophys. Suppl. Ser. 141, 297 (2000)>
=2000A&AS..141..297A 2000A&AS..141..297A
ADC_Keywords: Atomic physics ; Interstellar medium
Keywords: molecular processes - molecular data
Description:
The tables display the total emission probabilities, the total
dissociation probabilities and the mean kinetic energies released in
the dissociation for the rovibronic levels of B, C, B' and D states.
As these states are mixed together, we have labeled and ordered them
according to the Born Oppenheimer state of greatest weight. For each
rovibrational state they display also the term value and the weight of
Born Oppenheimer states B, C, B', D defined in eq (6) of the paper.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 103 409 *Data for the B state
table2.dat 103 128 Data for the C+ state
table3.dat 79 129 Data for the C- state
table4.dat 103 86 *Data for the B' state
table5.dat 103 24 Data for the D+ state
table6.dat 79 26 Data for the D- state
table7.dat 68 16 *Effect of using different electronic moment DX
table8.dat 91 169 Data for D- obtained with the DX electronic
moment of Drira. Comparison with Rothenberg
and Davidson
--------------------------------------------------------------------------------
Note on table1.dat and table4.dat: As for J=0 there is no rotational coupling
with C and D, the corresponding entries for rho(C) and rho(D) are left blank
Note on table7.dat: We compare the detailed emission probabilities obtained
for the Q lines emitted by the v'=3,J=1 of D-; for this table we neglect the
weak radial coupling with C-.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat table2.dat table4.dat table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
2- 3 I2 --- J Rotational quantum number
6- 7 I2 --- v Vibrational quantum number
11- 19 E9.2 --- rho(B) Fraction of the Born Oppenheimer state B (1)
23- 31 E9.2 --- rho(C) ? Fraction of the Born Oppenheimer state C (1)
35- 43 E9.2 --- rho(B') Fraction of the Born Oppenheimer state B' (1)
47- 55 E9.2 --- rho(D) ? Fraction of the Born Oppenheimer state D (1)
58- 67 F10.2 cm-1 E(v,J) Term value of the state B,v,J
71- 79 E9.2 s-1 At Total emission probability towards X
83- 91 E9.2 s-1 Ac Total dissociation probability towards X
95-103 E9.2 eV Ek Mean kinetic energy released in the dissociation
--------------------------------------------------------------------------------
Note (1): cf eq. (6) of the paper
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
2- 3 I2 --- J Rotational quantum number
6- 7 I2 --- v Vibrational quantum number
11- 19 E9.2 --- rho(C) Fraction of the Born Oppenheimer state C (1)
23- 31 E9.2 --- rho(D) Fraction of the Born Oppenheimer state D (1)
34- 43 F10.2 cm-1 E(v,J) Term value of the state C-,v,J
47- 55 E9.2 s-1 At Total emission probability towards X
59- 67 E9.2 s-1 Ac Total dissociation probability towards X
71- 79 E9.2 eV Ek Mean kinetic energy released in the dissociation
--------------------------------------------------------------------------------
Note (1): cf eq. (6) of the paper.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- v" ? Vibrational number of the line DX3-v"Q1 (1)
5- 13 E9.3 s-1 a Electronic dipole moment of Drira (2)
16- 24 E9.3 s-1 b Length form of Rothenberg and Davidson
27- 35 E9.3 s-1 c Velocity form of Rothenberg and Davidson
38- 46 E9.3 s-1 d Elect. dip. mom. of Branchett and Tennyson
49- 57 E9.3 s-1 e Calculation of Glass-Maujean
60- 68 E9.3 s-1 f The same as column b but with D potential
used by Glass-Maujean
--------------------------------------------------------------------------------
Note (1): The last line displays the total emission probability (sum over v") ;
in this example the contribution of dissociation is negligible
Note (2): a: Drira, 1999, J. Mol. Spectrosc. 198, 52
b,c: Rothenberg & Davidson, 1967, J. Mol. Spectrosc. 22, 1
d: Branchett & Tennyson, 1992, J. Phys. B: At. Mol. Phys. 25, 2017
e: Glass-Maujean, 1984, Atomic Data and Nuclear Tables 30, 301
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
2- 3 I2 --- J Rotational quantum number
6- 7 I2 --- v Vibrational quantum number
10- 19 F10.2 cm-1 E(v,J) Term value of the state D-,v,J, no coupling
23- 31 E9.2 s-1 At(1) Total emission probability towards X (1)
35- 43 E9.2 s-1 At(2) Total emission probability towards X (2)
47- 55 E9.2 s-1 Ac(1) Total dissociation probability towards X (1)
59- 67 E9.2 s-1 Ac(2) Total dissociation probability towards X (2)
71- 79 E9.2 eV Ek(1) Mean kinetic energy after dissociation (1)
83- 91 E9.2 eV Ek(2) Mean kinetic energy after dissociation (2)
--------------------------------------------------------------------------------
Note (1): Calculation with the electronic moment of Drira
Note (2): Calculation with the length form of the electronic moment
of Rothenberg and Davidson
--------------------------------------------------------------------------------
Acknowledgements: Herve Abgrall
(End) Patricia Bauer [CDS] 18-Nov-1999