J/A+AS/141/297      H2 total transition probability        (Abgrall+, 2000)

Total transition probability and spontaneous radiative dissociation of B, C, B' and D states of molecular hydrogen. Abgrall H., Roueff E., Drira I. <Astron. Astrophys. Suppl. Ser. 141, 297 (2000)> =2000A&AS..141..297A 2000A&AS..141..297A
ADC_Keywords: Atomic physics ; Interstellar medium Keywords: molecular processes - molecular data Description: The tables display the total emission probabilities, the total dissociation probabilities and the mean kinetic energies released in the dissociation for the rovibronic levels of B, C, B' and D states. As these states are mixed together, we have labeled and ordered them according to the Born Oppenheimer state of greatest weight. For each rovibrational state they display also the term value and the weight of Born Oppenheimer states B, C, B', D defined in eq (6) of the paper. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 103 409 *Data for the B state table2.dat 103 128 Data for the C+ state table3.dat 79 129 Data for the C- state table4.dat 103 86 *Data for the B' state table5.dat 103 24 Data for the D+ state table6.dat 79 26 Data for the D- state table7.dat 68 16 *Effect of using different electronic moment DX table8.dat 91 169 Data for D- obtained with the DX electronic moment of Drira. Comparison with Rothenberg and Davidson -------------------------------------------------------------------------------- Note on table1.dat and table4.dat: As for J=0 there is no rotational coupling with C and D, the corresponding entries for rho(C) and rho(D) are left blank Note on table7.dat: We compare the detailed emission probabilities obtained for the Q lines emitted by the v'=3,J=1 of D-; for this table we neglect the weak radial coupling with C-. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat table2.dat table4.dat table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 3 I2 --- J Rotational quantum number 6- 7 I2 --- v Vibrational quantum number 11- 19 E9.2 --- rho(B) Fraction of the Born Oppenheimer state B (1) 23- 31 E9.2 --- rho(C) ? Fraction of the Born Oppenheimer state C (1) 35- 43 E9.2 --- rho(B') Fraction of the Born Oppenheimer state B' (1) 47- 55 E9.2 --- rho(D) ? Fraction of the Born Oppenheimer state D (1) 58- 67 F10.2 cm-1 E(v,J) Term value of the state B,v,J 71- 79 E9.2 s-1 At Total emission probability towards X 83- 91 E9.2 s-1 Ac Total dissociation probability towards X 95-103 E9.2 eV Ek Mean kinetic energy released in the dissociation -------------------------------------------------------------------------------- Note (1): cf eq. (6) of the paper -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 3 I2 --- J Rotational quantum number 6- 7 I2 --- v Vibrational quantum number 11- 19 E9.2 --- rho(C) Fraction of the Born Oppenheimer state C (1) 23- 31 E9.2 --- rho(D) Fraction of the Born Oppenheimer state D (1) 34- 43 F10.2 cm-1 E(v,J) Term value of the state C-,v,J 47- 55 E9.2 s-1 At Total emission probability towards X 59- 67 E9.2 s-1 Ac Total dissociation probability towards X 71- 79 E9.2 eV Ek Mean kinetic energy released in the dissociation -------------------------------------------------------------------------------- Note (1): cf eq. (6) of the paper. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- v" ? Vibrational number of the line DX3-v"Q1 (1) 5- 13 E9.3 s-1 a Electronic dipole moment of Drira (2) 16- 24 E9.3 s-1 b Length form of Rothenberg and Davidson 27- 35 E9.3 s-1 c Velocity form of Rothenberg and Davidson 38- 46 E9.3 s-1 d Elect. dip. mom. of Branchett and Tennyson 49- 57 E9.3 s-1 e Calculation of Glass-Maujean 60- 68 E9.3 s-1 f The same as column b but with D potential used by Glass-Maujean -------------------------------------------------------------------------------- Note (1): The last line displays the total emission probability (sum over v") ; in this example the contribution of dissociation is negligible Note (2): a: Drira, 1999, J. Mol. Spectrosc. 198, 52 b,c: Rothenberg & Davidson, 1967, J. Mol. Spectrosc. 22, 1 d: Branchett & Tennyson, 1992, J. Phys. B: At. Mol. Phys. 25, 2017 e: Glass-Maujean, 1984, Atomic Data and Nuclear Tables 30, 301 -------------------------------------------------------------------------------- Byte-by-byte Description of file: table8.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 3 I2 --- J Rotational quantum number 6- 7 I2 --- v Vibrational quantum number 10- 19 F10.2 cm-1 E(v,J) Term value of the state D-,v,J, no coupling 23- 31 E9.2 s-1 At(1) Total emission probability towards X (1) 35- 43 E9.2 s-1 At(2) Total emission probability towards X (2) 47- 55 E9.2 s-1 Ac(1) Total dissociation probability towards X (1) 59- 67 E9.2 s-1 Ac(2) Total dissociation probability towards X (2) 71- 79 E9.2 eV Ek(1) Mean kinetic energy after dissociation (1) 83- 91 E9.2 eV Ek(2) Mean kinetic energy after dissociation (2) -------------------------------------------------------------------------------- Note (1): Calculation with the electronic moment of Drira Note (2): Calculation with the length form of the electronic moment of Rothenberg and Davidson -------------------------------------------------------------------------------- Acknowledgements: Herve Abgrall
(End) Patricia Bauer [CDS] 18-Nov-1999
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line