J/AJ/133/2464 Parameters and abundances of nearby giants (Luck+, 2007)
Giants in the local region.
Luck R.E., Heiter U.
<Astron. J., 133, 2464-2486 (2007)>
=2007AJ....133.2464L 2007AJ....133.2464L
ADC_Keywords: Abundances ; Spectroscopy ; Stars, giant ; Stars, nearby
Keywords: solar neighborhood - stars: abundances - stars: late-type
Abstract:
We present parameter and abundance data for a sample of 298 nearby
giants. The spectroscopic data for this work have a resolution of
R∼60000S/N>150, and spectral coverage from 475 to 685nm. Overall
trends in the Z>10 abundances are dominated by Galactic chemical
evolution, while the light-element abundances are influenced by
stellar evolution, as well as Galactic evolution. We find several
super-Li stars in our sample and confirm that Li abundances in the
first giant branch are related to mixing depths.
Description:
High signal-to-noise ratio spectra were obtained during several
observing runs between 1997 and 2005. For all observations we used the
Sandiford Cassegrain Echelle Spectrograph (McCarthy et al.
1993PASP..105..881M 1993PASP..105..881M) attached to the 2.1m telescope at McDonald
Observatory.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 87 298 Program Stars
table2.dat 96 298 Parameters and Iron Abundances
table3.dat 93 298 Mass and Luminosity Estimates
table4a.dat 114 298 *Average Abundances (Na, Mg, Al, Si, S, and Ca)
table4b.dat 114 298 *Average Abundances (Sc, Ti, V, Cr, Mn, and Fe)
table4c.dat 114 298 *Average Abundances (Co, Ni, Cu, Zn, Sr, and Y)
table4d.dat 108 298 *Average Abundances (Ba, La, Ce, Pr, Nd, and Eu)
table6.dat 67 298 Lithium Abundance Data
table7.dat 110 894 CNO Data for the 3 types of analysis
tables4.dat 152 872 *Average Abundances
--------------------------------------------------------------------------------
Note on tables4.dat, table4a.dat, table4b.dat, table4c.dat, table4d.dat:
the file "tables4.dat" was created from tables 4a-4d, with one line
for each abundance method in a way similar to table7.dat
All abundances are relative to H, i.e. abundances per element in
the form [x/H] where x is a mean over all ionization stages of the
element x. Results are expressed relative to Solar abundance, and use
the MARCS stellar model atmosphere and flux libraries, Gustafsson et
al. 2003, in ASP Conf. Ser. 288, "Stellar Atmosphere Modeling", see
http://marcs.astro.uu.se/
--------------------------------------------------------------------------------
See also:
J/ApJ/657/241 : Spectroscopy of Leo I red giants (Koch+, 2007)
J/MNRAS/382/553 : Abundances of nearby red clump giants (Liu+, 2007)
J/PASJ/57/109 : Late-G giants abundances (Takeda+, 2005)
J/A+A/430/165 : Radial velocities for 6691 K and M giants (Famaey+, 2005)
J/A+A/409/251 : Li abundances and velocities in F and G stars (Mallik+, 2003)
J/A+A/363/239 : Lithium abundances in single giant stars (de Medeiros+, 2000)
J/A+AS/139/433 : RV and vsini of evolved stars (de Medeiros+ 1999)
J/A+A/333/231 : O-M stars model atmospheres (Bessell+ 1998)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HIP The Hipparcos identification number
8- 13 I6 --- HD The HD identification number
15- 18 I4 -- HR ? The HR identification number
20- 25 F6.3 mag Vmag Apparent V band magnitude
27- 31 F5.2 mag VMAG Absolute V band magnitude (1)
33- 43 A11 --- SpType Spectral type (2)
45- 49 F5.2 mas plx Parallax
51- 55 F5.1 pc Dist Distance from parallax
57- 62 F6.2 deg GLON Galactic longitude
64- 69 F6.2 deg GLAT Galactic latitude
71- 76 F6.2 km/s RV Radial velocity
78- 81 F4.2 km/s e_RV Error in RV
83 A1 --- r_RV [LFM] Source for RV (3)
85- 87 A3 --- SB De Medeiros & Mayor (1999, cat. J/A+AS/139/433)
spectroscopic binary classification
--------------------------------------------------------------------------------
Note (1): From parallax derived distance.
Note (2): Primary source Hipparcos (ESA 1997, Cat. I/239).
Note (3): Note as follows:
L = this work;
F = Famaey et al. (2005, Cat. J/A+A/430/165);
M = de Medeiros & Mayor (1999, Cat. J/A+AS/139/433).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HIP The Hipparcos identification number
8- 13 I6 --- HD The HD identification number
15- 18 I4 -- HR ? The HR identification number
20- 23 I4 K STeff Spectroscopically determined effective
temperature
25- 28 F4.2 [cm/s2] Slog(g) Spectroscopically determined logarithmic
surface gravity
30- 33 F4.2 km/s SVt Spectroscopically determined
microturbulent velocity
35- 39 F5.2 [Sun] S[Fe/H] Spectroscopically determined mean
logarithmic iron abundance
41- 44 F4.2 [Sun] e_S[Fe/H] Standard deviation about Sp-[Fe/H]
46- 48 I3 --- o_S[Fe/H] Number of Fe I lines used
to determine Sp-[Fe/H]
50- 53 I4 K MTeff ? MARCS75 derived effective temperature
55- 58 F4.2 [cm/s2] Mlog(g) ? MARCS75 derived logarithmic surface
gravity
60- 63 F4.2 km/s MVt ? MARCS75 derived microturbulent velocity
65- 69 F5.2 [Sun] M[Fe/H] ? MARCS75 derived mean logarithmic iron
abundance
71- 74 I4 K PTeff ? Physical approach effective temperature
76- 79 F4.2 [cm/s2] Plog(g) ? Physical approach logarithmic surface
gravity
81- 84 F4.2 km/s PVt ? Physical approach microturbulent
velocity
86- 90 F5.2 [Sun] P[FeI/H] ? Physical approach mean logarithmic
FeI abundance
92- 96 F5.2 [Sun] P[FeII/H] ? Physical approach mean logarithmic
FeII abundance
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HIP The Hipparcos identification number
8- 13 I6 --- HD The HD identification number
15- 18 I4 -- HR ? The HR identification number
20- 24 F5.2 mag VMAG Absolute V band magnitude (2)(1)
26- 29 F4.2 mag e_VMAG Error in VMAG
31- 34 F4.2 solMass PMass ? Physical approach mass estimate (3)(2)
36- 40 F5.2 mag PMbol ? Physical approach absolute bolometic
magnitude estimate (2)(3)
42- 45 F4.2 solLum PLum ? Physical approach luminosity estimate (3)(2)
47- 50 F4.2 [cm/s2] Plog(g) ? Physical approach logarithmic surface
gravity estimate (3)(2)
52- 56 F5.2 solMass SIMass Spectroscopic inversion mass estimate (4)(2)
58- 62 F5.2 mag SIMbol Spectroscopic inversion absolute bolometic
magnitude estimate (2)(4)
64- 67 F4.2 solLum SILum Spectroscopic inversion luminosity
estimate (4)(2)
69- 72 F4.2 [cm/s2] SIlog(g) Spectroscopic inversion logarithmic surface
gravity estimate (4)(2)
74- 77 F4.2 solMass STMass ? Spectroscopic Teff mass estimate (2)(3)
79- 83 F5.2 mag STMbol ? Spectroscopic Teff absolute bolometic
magnitude estimate (3)(2)
85- 88 F4.2 solLum STLum ? Spectroscopic Teff luminosity
estimate (3)(2)
90- 93 F4.2 [cm/s2] STlog(g) ? Spectroscopic Teff logarithmic surface
gravity estimate (3)(2)
--------------------------------------------------------------------------------
Note (1): As computed from the Hipparcos parallax.
Note (2): Sample statistics
---------------------------------------------------------------------------
⟵---- Physical--------->
VMag e_Vmag Mass Mbol Lum log(g)
---------------------------------------------------------------------------
Mean 0.95 0.14 1.56 0.55 1.69 2.60
Standard Error 0.04 0.00 0.02 0.04 0.02 0.02
Median 0.90 0.15 1.45 0.48 1.72 2.56
Mode 0.97 0.16 1.32 0.26 1.69 2.56
Standard Deviation 0.71 0.05 0.42 0.74 0.30 0.40
Sample Variance 0.50 0.00 0.17 0.55 0.09 0.16
Kurtosis 0.739 -0.195 2.496 1.665 1.702 8.360
Skewness 0.405 -0.060 1.540 0.423 -0.359 -0.066
Range 3.86 0.28 2.20 4.70 1.88 4.16
Minimum -0.87 0.02 0.93 -1.73 0.72 0.00
Maximum 2.99 0.30 3.13 2.97 2.60 4.16
Count 298 298 284 288 288 284
---------------------------------------------------------------------------
←Spectroscopic Inversion-->⟵-Spectroscopic Teff--->
Mass Mbol Lum log(g) Mass Mbol Lum log(g)
---------------------------------------------------------------------------
Mean 2.72 0.63 1.66 2.89 1.64 0.62 1.66 2.70
Standard Error 0.08 0.04 0.02 0.03 0.02 0.04 0.02 0.02
Median 2.38 0.57 1.68 2.84 1.51 0.55 1.69 2.67
Mode 1.42 0.59 1.71 2.77 1.29 0.29 1.75 2.69
Standard Deviation 1.41 0.77 0.31 0.43 0.42 0.76 0.30 0.38
Sample Variance 1.98 0.59 0.09 0.19 0.18 0.58 0.09 0.15
Kurtosis 3.144 1.202 1.207 2.169 1.435 1.155 1.155 2.444
Skewness 1.424 0.403 -0.406 0.705 1.280 0.383 -0.383 0.963
Range 9.93 4.49 1.80 2.64 2.13 4.44 1.77 2.30
Minimum 0.48 -1.50 0.71 1.72 0.97 -1.46 0.72 1.73
Maximum 10.41 2.99 2.51 4.36 3.10 2.98 2.49 4.03
Count 298 298 298 298 295 295 295 295
---------------------------------------------------------------------------
Note (3): Mass and bolometric magnitude derived using the isochrones of
Bertelli et al. (1994, Cat. J/A+AS/106/275) that are interpolated
using the absolute V magnitude and photometric temperature.
Lum and log(g) then derived using standard relations.
Note (4): The spectroscopic temperature is used to determine the bolometric
correction using Bessell, Castelli & Plez (1998, Cat. J/A+A/333/231).
Mass is then determined using the spectroscopic value for the surface
gravity (log(g)) and the luminosity using the standard relations.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4a.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HD The HD identification number
8- 12 F5.2 [Sun] SNa ? MARCS spectroscopic model average Na abundance
14- 18 F5.2 [Sun] MNa ? MARCS75 spectroscopic model average Na abundance
20- 24 F5.2 [Sun] PNa ? MARCS physical model average Na abundance
26- 30 F5.2 [Sun] SMg ? MARCS spectroscopic model average Mg abundance
32- 36 F5.2 [Sun] MMg ? MARCS75 spectroscopic model average Mg abundance
38- 42 F5.2 [Sun] PMg ? MARCS physical model average Mg abundance
44- 48 F5.2 [Sun] SAl ? MARCS spectroscopic model average Al abundance
50- 54 F5.2 [Sun] MAl ? MARCS75 spectroscopic model average Al abundance
56- 60 F5.2 [Sun] PAl ? MARCS physical model average Al abundance
62- 66 F5.2 [Sun] SSi ? MARCS spectroscopic model average Si abundance
68- 72 F5.2 [Sun] MSi ? MARCS75 spectroscopic model average Si abundance
74- 78 F5.2 [Sun] PSi ? MARCS physical model average Si abundance
80- 84 F5.2 [Sun] SS ? MARCS spectroscopic model average S abundance
86- 90 F5.2 [Sun] MS ? MARCS75 spectroscopic model average S abundance
92- 96 F5.2 [Sun] PS ? MARCS physical model average S abundance
98-102 F5.2 [Sun] SCa ? MARCS spectroscopic model average Ca abundance
104-108 F5.2 [Sun] MCa ? MARCS75 spectroscopic model average Ca abundance
110-114 F5.2 [Sun] PCa ? MARCS physical model average Ca abundance
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4b.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HD The HD identification number
8- 12 F5.2 [Sun] SSc ? MARCS spectroscopic model average Sc abundance
14- 18 F5.2 [Sun] MSc ? MARCS75 spectroscopic model average Sc abundance
20- 24 F5.2 [Sun] PSc ? MARCS physical model average Sc abundance
26- 30 F5.2 [Sun] STi ? MARCS spectroscopic model average Ti abundance
32- 36 F5.2 [Sun] MTi ? MARCS75 spectroscopic model average Ti abundance
38- 42 F5.2 [Sun] PTi ? MARCS physical model average Ti abundance
44- 48 F5.2 [Sun] SV ? MARCS spectroscopic model average V abundance
50- 54 F5.2 [Sun] MV ? MARCS75 spectroscopic model average V abundance
56- 60 F5.2 [Sun] PV ? MARCS physical model average V abundance
62- 66 F5.2 [Sun] SCr ? MARCS spectroscopic model average Cr abundance
68- 72 F5.2 [Sun] MCr ? MARCS75 spectroscopic model average Cr abundance
74- 78 F5.2 [Sun] PCr ? MARCS physical model average Cr abundance
80- 84 F5.2 [Sun] SMn ? MARCS spectroscopic model average Mn abundance
86- 90 F5.2 [Sun] MMn ? MARCS75 spectroscopic model average Mn abundance
92- 96 F5.2 [Sun] PMn ? MARCS physical model average Mn abundance
98-102 F5.2 [Sun] SFe MARCS spectroscopic model average Fe abundance
104-108 F5.2 [Sun] MFe ? MARCS75 spectroscopic model average Fe abundance
110-114 F5.2 [Sun] PFe ? MARCS physical model average Fe abundance
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4c.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HD The HD identification number
8- 12 F5.2 [Sun] SCo ? MARCS spectroscopic model average Co abundance
14- 18 F5.2 [Sun] MCo ? MARCS75 spectroscopic model average Co abundance
20- 24 F5.2 [Sun] PCo ? MARCS physical model average Co abundance
26- 30 F5.2 [Sun] SNi ? MARCS spectroscopic model average Ni abundance
32- 36 F5.2 [Sun] MNi ? MARCS75 spectroscopic model average Ni abundance
38- 42 F5.2 [Sun] PNi ? MARCS physical model average Ni abundance
44- 48 F5.2 [Sun] SCu ? MARCS spectroscopic model average Cu abundance
50- 54 F5.2 [Sun] MCu ? MARCS75 spectroscopic model average Cu abundance
56- 60 F5.2 [Sun] PCu ? MARCS physical model average Cu abundance
62- 66 F5.2 [Sun] SZn ? MARCS spectroscopic model average Zn abundance
68- 72 F5.2 [Sun] MZn ? MARCS75 spectroscopic model average Zn abundance
74- 78 F5.2 [Sun] PZn ? MARCS physical model average Zn abundance
80- 84 F5.2 [Sun] SSr ? MARCS spectroscopic model average Sr abundance
86- 90 F5.2 [Sun] MSr ? MARCS75 spectroscopic model average Sr abundance
92- 96 F5.2 [Sun] PSr ? MARCS physical model average Sr abundance
98-102 F5.2 [Sun] SY ? MARCS spectroscopic model average Y abundance
104-108 F5.2 [Sun] MY ? MARCS75 spectroscopic model average Y abundance
110-114 F5.2 [Sun] PY ? MARCS physical model average Y abundance
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4d.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HD The HD identification number
8- 12 F5.2 [Sun] SBa ? MARCS spectroscopic model average Ba abundance
14- 18 F5.2 [Sun] MBa ? MARCS75 spectroscopic model average Ba abundance
20- 24 F5.2 [Sun] PBa ? MARCS physical model average Ba abundance
26- 30 F5.2 [Sun] SLa ? MARCS spectroscopic model average La abundance
32- 36 F5.2 [Sun] MLa ? MARCS75 spectroscopic model average La abundance
38- 42 F5.2 [Sun] SCe ? MARCS spectroscopic model average Ce abundance
44- 48 F5.2 [Sun] MCe ? MARCS75 spectroscopic model average Ce abundance
50- 54 F5.2 [Sun] PCe ? MARCS physical model average Ce abundance
56- 60 F5.2 [Sun] SPr ? MARCS spectroscopic model average Pr abundance
62- 66 F5.2 [Sun] MPr ? MARCS75 spectroscopic model average Pr abundance
68- 72 F5.2 [Sun] PPr ? MARCS physical model average Pr abundance
74- 78 F5.2 [Sun] SNd ? MARCS spectroscopic model average Nd abundance
80- 84 F5.2 [Sun] MNd ? MARCS75 spectroscopic model average Nd abundance
86- 90 F5.2 [Sun] PNd ? MARCS physical model average Nd abundance
92- 96 F5.2 [Sun] SEu ? MARCS spectroscopic model average Eu abundance
98-102 F5.2 [Sun] MEu ? MARCS75 spectroscopic model average Eu abundance
104-108 F5.2 [Sun] PEu ? MARCS physical model average Eu abundance
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HIP The Hipparcos identification number
8- 13 I6 --- HD The HD identification number
15- 18 I4 -- HR ? The HR identification number
20- 23 I4 K STeff Spectrosopic analysis effective temperature
25- 28 I4 K MTeff ? MARCS75 analysis effective temperature
30- 33 I4 K PTeff ? Physical analysis effective temperature
35- 39 F5.2 km/s Vel Macroturbulent or rotational velocity
41 A1 --- n_Vel [GR] Gaussian macroturbulence or Rotation Vel
43- 47 F5.1 10-13m EWLi Li Equivalent width in milliAngstroms (2)
49- 53 F5.2 [-] S-Li Spectrosopic analysis Li abundance (3)
55- 59 F5.2 [-] M-Li ? MARCS75 analysis Li abundance (3)
61- 65 F5.2 [-] P-Li ? Physical analysis Li abundance (3)
67 A1 --- Q Fit quality (4)
--------------------------------------------------------------------------------
Note (2): Lithium EW is for the synthesized combined components.
Note (3): Abundances are logε where log ε(H)=12.
Note (4): Where A through D are quality of fit with A the best fit.
L denotes an abundance limit.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- A [SMP] Type of analysis (G1)
3- 8 I6 --- HIP The Hipparcos identification number
10- 15 I6 --- HD The HD identification number
17- 20 I4 --- HR ? The HR identification number
22- 25 F4.2 [-] C ? The C number abundance (2)
27- 30 F4.2 [-] N ? The N number abundance (2)
32- 35 F4.2 [-] O ? The O number abundance (2)
37- 41 F5.2 [Sun] [C/H] ? Log of C/H number abundance (3)
43- 47 F5.2 [Sun] [N/H] ? Log of N/H number abundance (3)
49- 53 F5.2 [Sun] [O/H] ? Log of O/H number abundance (3)
55- 59 F5.2 [Sun] [C/Fe] ? Log of C/Fe number abundance (3)
61- 65 F5.2 [Sun] [N/Fe] ? Log of C/Fe number abundance (3)
67- 71 F5.2 [Sun] [O/Fe] ? Log of C/Fe number abundance (3)
73- 76 F4.2 [-] CNO ? The C+N+O number abundance (2)
78- 82 F5.2 [Sun] [CNO/H] ? Log of (C+N+O)/H number abundance (3)
84- 88 F5.2 [Sun] [CNO/Fe] ? Log of (C+N+O)/Fe number abundance (3)
90- 93 F4.2 [-] CN ? The C+N number abundance (2)
95- 99 F5.2 [Sun] [CN/H] ? Log of (C+N)/H number abundance (3)
101-105 F5.2 [Sun] [CN/Fe] ? Log of (C+N)/Fe number abundance (3)
107-110 F4.2 [-] C/O ? Ratio of C to O abundance [10^(C minus O)] (2)
--------------------------------------------------------------------------------
Note (2): Abundances are logε where logε(H)=12.
Note (3): CNO abundances relative to the Sun using solar CNO determined
using a solar reflection spectrum and MARCS and MARCS75 models. For
MARCS models solar C, N, O=8.50, 8.18, 8.81 and for MARCS75 solar C,
N, O=8.42, 8.16, and 8.75 except for Teff>6200 where C=8.38 and 8.52
respectively. [C/Fe], [N/Fe], [O/Fe]: CNO abundances normalized to
the Fe content. [C/Fe]=[C/H] minus [Fe/H] where [Fe/H] is the iron
content of the star relative to the solar value.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tables4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 I6 --- HD The HD identification number
8 A1 --- A [SMP] Type of analysis (G1)
10- 14 F5.2 [Sun] Na ? Average Na abundance
16- 20 F5.2 [Sun] Mg ? Average Mg abundance
22- 26 F5.2 [Sun] Al ? Average Al abundance
28- 32 F5.2 [Sun] Si ? Average Si abundance
34- 38 F5.2 [Sun] S ? Average S abundance
40- 44 F5.2 [Sun] Ca ? Average Ca abundance
46- 50 F5.2 [Sun] Sc ? Average Sc abundance
52- 56 F5.2 [Sun] Ti ? Average Ti abundance
58- 62 F5.2 [Sun] V ? Average V abundance
64- 68 F5.2 [Sun] Cr ? Average Cr abundance
70- 74 F5.2 [Sun] Mn ? Average Mn abundance
76- 80 F5.2 [Sun] Fe ? Average Fe abundance
82- 86 F5.2 [Sun] Co ? Average Co abundance
88- 92 F5.2 [Sun] Ni ? Average Ni abundance
94- 98 F5.2 [Sun] Cu ? Average Cu abundance
100-104 F5.2 [Sun] Zn ? Average Zn abundance
106-110 F5.2 [Sun] Sr ? Average Sr abundance
112-116 F5.2 [Sun] Y ? Average Y abundance
118-122 F5.2 [Sun] Ba ? Average Ba abundance
124-128 F5.2 [Sun] La ? Average La abundance
130-134 F5.2 [Sun] Ce ? Average Ce abundance
136-140 F5.2 [Sun] Pr ? Average Pr abundance
142-146 F5.2 [Sun] Nd ? Average Nd abundance
148-152 F5.2 [Sun] Eu ? Average Eu abundance
--------------------------------------------------------------------------------
Global Notes:
Note (G1): Type of analysis as follows:
S = Spectroscopic analysis;
M = MARCS75 analysis;
P = Physical analysis.
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 06-May-2009