J/AJ/149/131 Parameters of galactic nearby main-sequence stars (Eker+, 2015)
Main-sequence effective temperatures from a revised mass-luminosity relation
based on accurate properties.
Eker Z., Soydugan F., Soydugan E., Bilir S., Yaz Gokce E., Steer I.,
Tuysuz M., Senyuz T., Demircan O.
<Astron. J., 149, 131 (2015)>
=2015AJ....149..131E 2015AJ....149..131E
ADC_Keywords: Binaries, eclipsing ; Stars, masses ; Effective temperatures ;
Stars, diameters
Keywords: binaries: eclipsing - binaries: spectroscopic - catalogs -
stars: fundamental parameters
Abstract:
The mass-luminosity (M-L), mass-radius (M-R), and mass-effective
temperature (M-Teff) diagrams for a subset of galactic nearby
main-sequence stars with masses and radii accurate to ≤3% and
luminosities accurate to ≤30% (268 stars) has led to a putative
discovery. Four distinct mass domains have been identified, which we
have tentatively associated with low, intermediate, high, and very
high mass main-sequence stars, but which nevertheless are clearly
separated by three distinct break points at 1.05, 2.4, and 7M☉
within the studied mass range of 0.38-32M☉. Further, a revised
mass-luminosity relation (MLR) is found based on linear fits for each
of the mass domains identified. The revised, mass-domain based MLRs,
which are classical (L∝Mα), are shown to be preferable
to a single linear, quadratic, or cubic equation representing an
alternative MLR. Stellar radius evolution within the main sequence for
stars with M>1M☉ is clearly evident on the M-R diagram, but it
is not clear on the M-Teff diagram based on published temperatures.
Effective temperatures can be calculated directly using the well known
Stephan-Boltzmann law by employing the accurately known values of M
and R with the newly defined MLRs. With the calculated temperatures,
stellar temperature evolution within the main sequence for stars with
M>1M☉ is clearly visible on the M-Teff diagram. Our study
asserts that it is now possible to compute the effective temperature
of a main-sequence star with an accuracy of ∼6%, as long as its
observed radius error is adequately small (<1%) and its observed mass
error is reasonably small (<6%).
Description:
The stars were selected from Table 2 of Eker et al.
(2014PASA...31...24E 2014PASA...31...24E) with three basic conditions: (1) stars must be
on the main-sequence, (2) masses and radii relative errors must be
less than or equal to 3%, and (3) luminosity errors must be less than
or equal to 30%. Among 514 stars (257 binaries), 296 stars were found
fulfilling the criteria (see Table 2).
The method presented in Section 4 for calculating effective
temperatures has been applied to a larger sample (371 stars)
containing less accurate masses and radii. The sample has been chosen
from the 514 stars in the same catalog from which the calibration
sample was selected. For this larger sample there were only two
selection rules: (1) both mass and radii could have errors up to 6%
and (2) both components had to be on the main sequence. Unlike for the
calibration stars, there is no limitation on the accuracy of the
luminosities here. There are 408 stars with mass and radii having
errors less than or equal to 6%. That number is reduced to 371 after
removing non-main-sequence stars. This new list naturally contains the
calibration sample. The new calculated effective temperatures and
published temperatures for these stars are listed in Table 7.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 111 296 The basic stellar parameters and relative errors
of the stars selected for the calibration sample
table7.dat 123 374 Comparing published and calculated (empirical)
effective temperatures
--------------------------------------------------------------------------------
See also:
J/other/A+ARV/18.67 : Accurate masses and radii of normal stars (Torres+, 2010)
J/MNRAS/382/1073 : M/L relation of intermediate-mass stars (Malkov+, 2007)
J/MNRAS/357/497 : Kinematics of W UMa-type binaries (Bilir+, 2005)
J/AJ/106/773 : Mass-luminosity relation (Henry+, 1993)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Seq [1/296] Running sequence number
5- 28 A24 --- Name Star name
30- 31 I2 h RAh Hour of Right Ascension (J2000)
33- 34 I2 min RAm Minute of Right Ascension (J2000)
36- 40 F5.2 s RAs Second of Right Ascension (J2000)
42 A1 --- DE- Sign of the Declination (J2000)
43- 44 I2 deg DEd Degree of Declination (J2000)
46- 47 I2 arcmin DEm Arcminute of Declination (J2000)
49- 53 F5.2 arcsec DEs Arcsecond of Declination (J2000)
55- 57 A3 --- m_Name Binary component (primary or secondary)
59- 64 F6.3 Msun Mass [0.1/31] Stellar Mass (1)
66- 70 F5.3 --- e_Mass [0.001/0.03] Relative uncertainty in Mass (1)
72- 76 F5.3 Rsun Rad [0.2/9.4] Stellar radius R/R☉ (1)
78- 82 F5.3 --- e_Rad [0.002/0.03] Relative uncertainty in Rad (1)
84- 88 I5 K Teff [2952/43000] Published effective temperature (1)
90- 93 I4 K e_Teff ? Uncertainty in Teff (1)
95-100 F6.3 [Lsun] logL [-2.4/5.5] log stellar Luminosity (1)
102-106 F5.3 --- e_logL [0/0.12] Relative uncertainty in L {Dleta}L/L (1)
108-109 I2 % FF [3/97] Roche lobe filling factor (1) (2)
111 A1 --- ZAMS [CX] Zero Age Main Sequence (ZAMS) status:
C=assumed MS star, X=probable non-MS star (3)
--------------------------------------------------------------------------------
Note (1): Values taken from Eker et al. (2014PASA...31...24E 2014PASA...31...24E).
Note (2): An Roche lobe filling factor for a star in a binary, which is defined
as FF=/RL, where is average radius and RL is Roche Lobe
radius relative to the semimajor axis of the orbit, is a parameter that
indicates its sphericity.
Note (3): The ZAMS status are defined as follows:
C = Assumed zero age main-sequence star;
X = Probable non main-sequence star (located above ZAMS line in Figure 1).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Seq [1/374] Running sequence number
5- 28 A24 --- Name Star name
30- 31 I2 h RAh Hour of Right Ascension (J2000)
33- 34 I2 min RAm Minute of Right Ascension (J2000)
36- 40 F5.2 s RAs Second of Right Ascension (J2000)
42 A1 --- DE- Sign of the Declination (J2000)
43- 44 I2 deg DEd Degree of Declination (J2000)
46- 47 I2 arcmin DEm Arcminute of Declination (J2000)
49- 53 F5.2 arcsec DEs Arcsecond of Declination (J2000)
55- 57 A3 --- m_Name Binary component (primary or secondary)
59- 63 F5.3 --- eMass [0.001/0.06] Published relative mass uncertainty
65- 69 F5.3 --- eRad [0.002/0.06] Published relative radius
uncertainty
71- 75 I5 K Teff1 [3061/43000]? Published effective temperature
77- 80 I4 K e_Teff1 ? Uncertainty in Tpub ΔTeff
82- 86 F5.3 --- eTeff1 ? Published relative temperature uncertainty
88-106 A19 --- BibCode Reference BibCode for published quantities
108-112 I5 K Teff2 [2911/40520] Calculated effective temperature
114-117 I4 K e_Teff2 Maximum Tcal uncertainty ΔTeff
119-123 F5.3 --- eTeff2 [0.06/0.1] Relative calculated temperature
uncertainty
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Sylvain Guehenneux [CDS] 23-Apr-2015